The Role Explainable Artificial Intelligence in Enhancing Auditor Judgment Quality in Indonesia
Main Article Content
Abstract
This study explores the role of Explainable Artificial Intelligence (XAI) in improving the quality of auditors’ decision-making in Indonesia. As AI systems become more prevalent in auditing practices, concerns regarding transparency and interpretability are increasingly relevant. XAI offers a solution by making AI-driven insights more understandable, thereby supporting professional judgment and reducing reliance on black-box systems. A quantitative approach was used, involving 100 professional auditors who completed a structured questionnaire based on a 5-point Likert scale. Data were analyzed using SPSS version 25. The findings revealed that XAI significantly influences auditors' decision-making quality, particularly in enhancing decision accuracy, risk assessment, and confidence in professional judgments. Regression analysis showed a strong positive relationship between XAI and decision-making quality, with XAI explaining 46.2% of the variance. These results highlight the importance of implementing explainable AI technologies to foster trust, accountability, and effectiveness in auditing practices across Indonesia.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
C. Zhong and S. Goel, “Transparent AI in Auditing through Explainable AI,” Curr. Issues Audit., vol. 18, no. 2, pp. A1–A14, 2024.
E. K. Jain and L. Jha, “Blockchain-Powered AI Ethics Compliance Framework for Autonomous Systems,” Int. J. Adv. Res. Comput. Sci. Eng., vol. 1, no. 1, pp. 67–76, 2025.
D. SEGHETTO, “Abbattere le Barriere tra Veicoli Elettrici e Rete: L’Importanza dei Data Space Europei per la Ricarica Intelligente e l’Integrazione Vehicle-to-Grid,” 2023.
S. Ivakhnenkov, “Artificial intelligence application in auditing,” 2023.
C. Yunxiang, “Can Small Banks Compete on Local Data in Online Retail Loans? The Example of Baotou Rural Commercial Bank,” 2020.
N. Rane, S. Choudhary, and J. Rane, “Explainable Artificial Intelligence (XAI) approaches for transparency and accountability in financial decision-making,” Available SSRN 4640316, 2023.
A. N. Anang, O. E. Ajewumi, T. Sonubi, K. C. Nwafor, J. B. Arogundade, and I. J. Akinbi, “Explainable AI in financial technologies: Balancing innovation with regulatory compliance,” Int. J. Sci. Res. Arch., vol. 13, no. 1, pp. 1793–1806, 2024.
R. K. Mishra, S. Srivastava, S. Singh, and M. K. Upadhyay, “Exploring the Opportunities of AI Integral with DL and ML Models in Financial and Accounting Systems,” in 2024 4th International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 2024, pp. 999–1003.
N. Fachriyah and O. L. Anggraeni, “The Use of Artificial Intelligence in Financial Statement Audit.,” J. Indones. Sos. Teknol., vol. 5, no. 10, 2024.
L. Lidiana, “AI and auditing: enhancing audit efficiency and effectiveness with artificial intelligence,” Account. Stud. tax J., vol. 1, no. 3, pp. 214–223, 2024.
M. R. Mukhtar, A. M. Syahrul, and A. Habibi, “Penerapan Audit Berbasis Artificial Intelligence di Indonesia: Sebuah Metasintetis,” J. Econ. Educ. Entrep. Stud., vol. 4, no. 2, pp. 711–728, 2023.
J. Lucyanda, D. Rudianto, H. Hendrati, D. Mulyaningsih, and S. Rahmawati, “Bakrie International Conference on Communication, Management, Politics & Accounting (BICOMPACT 2023).” Universitas Bakrie Press, 2024.
M. I. M. Haeruddin, U. D. Natsir, N. F. Aswar, A. P. Aslam, and R. Salam, “Here comes the sun: Green HRM implementation toward SME’s sustainability in tourism industry,” Int. J. Prof. Bus. Rev., vol. 8, no. 4, 2023.
I. P. E. Darmawan, P. A. Djuri, and R. F. Rhamadhani, “Implementasi Artificial Intelligence Dalam Dunia Auditing: Sebuah Peluang atau Tantangan Baru,” J. Akunt. Manad., pp. 675–683, 2024.
D. Patil, “Explainable Artificial Intelligence (XAI): Enhancing Transparency And Trust In Machine Learning Models,” Available SSRN 5057400, 2024.
D. Saha et al., “Balancing Nets and Lives: A Socio-Ecological Analysis of Sustainable Fisheries on the Indian Coast of the Gulf of Mannar,” Sustainability, vol. 16, no. 20, p. 8738, 2024.
P. Zodage, H. Harianawala, H. Shaikh, and A. Kharodia, “Explainable AI (XAI): History, basic ideas and methods,” Int. J. Adv. Res. Sci. Commun. Technol., vol. 3, 2024.
A. Das and P. Rad, “Opportunities and challenges in explainable artificial intelligence (xai): A survey,” arXiv Prepr. arXiv2006.11371, 2020.
P. Hamzah, E. Yeba, S. P. Maithy, and G. B. Poetra, “Opportunities and Challenges in Integrating Artificial Intelligence into Financial Auditing,” J. Econ. Educ. Entrep. Stud., vol. 5, no. 4, pp. 591–600, 2024.
V. M. Bhavya, M. Dharmananda, M. Monica, S. Patel, M. Mohammed, and M. Reguraman, “Emerging Trends and Innovations of Artificial Intelligence in the Accounting and Financial Landscape,” Adv. Intell. Process Autom., pp. 575–598, 2025.
C. Mohitkar and D. Lakshmi, “Explainable AI for Transparent Cyber-Risk Assessment and Decision-Making,” in Machine Intelligence Applications in Cyber-Risk Management, IGI Global Scientific Publishing, 2025, pp. 219–246.
D. R. Don et al., “Automation of Explainability Auditing for Image Recognition,” Int. J. Multimed. Data Eng. Manag., vol. 14, no. 1, pp. 1–17, 2023.
N. J. Jagannathan, N. D. N. Labhade-Kumar, N. R. Rastogi, N. M. V Unni, and K. K. Baseer, “Developing interpretable models and techniques for explainable AI in decision-making,” Sci. Temper, vol. 14, no. 04, pp. 1324–1331, 2023.
E. Ruiz-Barbadillo, N. Gomez-Aguilar, C. De Fuentes-Barberá, and M. A. García-Benau, “Audit quality and the going-concern decision-making process: Spanish evidence,” Eur. Account. Rev., vol. 13, no. 4, pp. 597–620, 2004.
A. Setiawan and H. Djajadikerta, “The Influence Of Audit Competence And Auditor Performance On Audit Quality According To Auditor’s Perception,” J. Soc. Econ. Res., vol. 6, no. 1, pp. 577–582, 2024.
J. V Carcello, D. R. Hermanson, and R. H. Hermanson, “Audit quality research in the United States,” Maandbl. voor Account. en Bedrijfsecon., vol. 69, no. 6, pp. 359–364, 1995.
P. D. Wedemeyer, “A discussion of auditor judgment as the critical component in audit quality–A practitioner’s perspective,” Int. J. Discl. Gov., vol. 7, no. 4, pp. 320–333, 2010.
M. Rija, “Auditing quality: some empirical Studies,” in Eurasian Business Perspectives: Proceedings of the 20th Eurasia Business and Economics Society Conference-Vol. 1, 2017, pp. 3–20.
V. Venkatesh and F. D. Davis, “A theoretical extension of the technology acceptance model: Four longitudinal field studies,” Manage. Sci., vol. 46, no. 2, pp. 186–204, 2000.
R. C. Mayer, J. H. Davis, and F. D. Schoorman, “An integrative model of organizational trust,” Acad. Manag. Rev., vol. 20, no. 3, pp. 709–734, 1995.
H. Choung, P. David, and A. Ross, “Trust in AI and its role in the acceptance of AI technologies,” Int. J. Human–Computer Interact., vol. 39, no. 9, pp. 1727–1739, 2023.
I. Baroni, G. R. Calegari, D. Scandolari, and I. Celino, “AI-TAM: a model to investigate user acceptance and collaborative intention in human-in-the-loop AI applications,” Hum. Comput., vol. 9, no. 1, pp. 1–21, 2022.
K. Kayser and A. Telukdarie, “Literature review: Artificial intelligence adoption within the accounting profession applying the technology acceptance model (3),” in ICABR Conference, 2023, pp. 217–231.
S. M. Geddam, N. Nethravathi, and A. A. Hussian, “Understanding AI Adoption: The Mediating Role of Attitude in User Acceptance,” J. Informatics Educ. Res., vol. 4, no. 2, 2024.
M. T. Dzindolet, S. A. Peterson, R. A. Pomranky, L. G. Pierce, and H. P. Beck, “The role of trust in automation reliance,” Int. J. Hum. Comput. Stud., vol. 58, no. 6, pp. 697–718, 2003.
F. K. Hatkehposhti, R. Fallah, H. R. G. Roshan, and K. Azinfar, “A model for measuring the activity of audit tools on improving the financial performance of hospitals,” Soc. Determ. Heal., vol. 10, pp. 1–12, 2024.