
The Eastasouth Journal of Information System and Computer Science 

Vol. 1, No. 01, August, pp. 65 - 68   

  

Journal homepage: https://esj.eastasouth-institute.com/index.php/esiscs 

 

 

Reducing Oracle RAC Wait Events by Using Instance-Specific Block 

Allocation for Production Applications 

Murali Natti 
Lead Database Engineer | DevOps Lead | Database Architect | Cloud Infrastructure Solutions Expert | DB 

Security Lead 

Article Info  ABSTRACT 

Article history: 

Received Aug, 2023 

Revised Aug, 2023 

Accepted Aug, 2023 

 

 Oracle Real Application Clusters (RAC) is a robust and high-

availability solution designed to enable multiple database instances to 

share the same physical database, offering benefits such as scalability 

and fault tolerance. However, while Oracle RAC can support critical 

production environments, it introduces significant complexities, 

particularly with regard to wait events. One of the primary 

performance bottlenecks in Oracle RAC is inter-instance 

communication, commonly referred to as cache fusion, where instances 

must exchange and synchronize shared data blocks across the cluster. 

This overhead becomes particularly problematic for production 

applications that access commonly used tables or objects, leading to 

increased wait times, slower response rates, and reduced throughput. 

This paper outlines a novel approach that aims to alleviate Oracle RAC 

wait events by binding specific application instances to individual 

Oracle RAC nodes. By allocating frequently accessed tables or objects 

to specific nodes, this method reduces contention, optimizes database 

access, and enhances overall application performance. 

Keywords: 

Application Performance 

Cache Fusion 

Data Partitioning 

Database Scalability 

High Availability 
Instance-Specific Block 

Allocation 

Load Balancing 

Oracle RAC 

Resource Contention 

Wait Events This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Name: Murali Natti 

Institution: Lead Database Engineer | DevOps Lead | Database Architect | Cloud Infrastructure Solutions 

Expert | DB Security Lead 

Email: murali.natti@gmail.com 

 

1. INTRODUCTION 

The Challenge of Oracle RAC Wait 

Events Oracle Real Application Clusters 

(RAC) [1] is a high-availability solution 

designed for large-scale, critical production 

environments. It allows multiple instances to 

access a single database, thereby providing 

horizontal scalability, fault tolerance, and 

continuous availability. However, the 

distributed nature of Oracle RAC also 

introduces inherent complexities. One of the 

most significant challenges faced by 

organizations running Oracle RAC in 

production environments is the occurrence of 

high wait events, particularly related to inter-

instance communication. In an Oracle RAC 

environment, multiple instances share data 

blocks stored in a centralized storage location. 

When an instance requires a data block that 

another instance currently holds in memory, a 

communication process known as cache 

fusion [2] is triggered. This process allows one 

instance to transfer a copy of the data block to 

another, enabling it to continue processing. 

While cache fusion is essential for ensuring 

data consistency across the cluster, it comes 

with a substantial performance overhead. As 

instances must frequently synchronize shared 

data blocks, wait events such as gc cr request, 

https://creativecommons.org/licenses/by-sa/4.0/
mailto:murali.natti@gmail.com


The Eastasouth Journal of Information System and Computer Science (ESISCS)   

Vol. 1, No. 01, August, pp. 65 - 68 

 

66 

gc buffer busy, and gc current block busy can 

cause significant delays in application 

performance. This behavior is particularly 

detrimental to applications that frequently 

access tables or data objects with high 

contention. The Impact on Applications For 

production-critical applications, high wait 

times can lead to noticeable performance 

degradation. When applications spend 

considerable time waiting for data blocks to 

be transferred between instances, increased 

application latency, resource contention, and 

performance inconsistency become common. 

The most direct consequence of cache fusion-

related wait events is increased latency in 

application transactions. As database blocks 

are moved between nodes, the response times 

for queries and updates are significantly 

delayed, resulting in slower transaction 

processing. The excessive communication 

required between instances to transfer data 

blocks consumes CPU, I/O, and network 

resources inefficiently. This not only hinders 

the performance of the database but also 

increases the overall resource load on the 

system, contributing to potential bottlenecks. 

The performance of applications in Oracle 

RAC environments can be highly 

inconsistent, especially during peak periods. 

High contention for shared blocks may cause 

fluctuating response times, leading to 

unpredictable performance behavior under 

heavy workloads. This paper proposes a 

solution that minimizes inter-instance 

communication, thereby addressing these 

issues. By binding specific application 

instances to individual Oracle RAC nodes and 

allocating commonly accessed tables or 

objects to those nodes, we aim to reduce 

contention, optimize data access, and enhance 

overall application performance. 

2. THE PROPOSED SOLUTION: 

INSTANCE-SPECIFIC BLOCK 

ALLOCATION FOR CRITICAL 

APPLICATIONS 

In traditional Oracle RAC 

configurations, all instances within the cluster 

share access to the same set of data blocks. 

This shared access increases the likelihood of 

cache contention, particularly when multiple 

instances access the same blocks 

simultaneously. As multiple instances 

attempt to read or modify the same data 

blocks, cache fusion [2] operations must 

synchronize and transfer these blocks 

between instances, leading to increased 

latency and resource overhead. This 

contention results in high wait events, 

degraded system performance, and 

significant slowdowns in transaction 

processing, particularly for high-traffic 

applications that require frequent access to 

shared data objects. The proposed solution 

seeks to mitigate these issues by binding 

application workloads to specific Oracle RAC 

nodes and configuring instance-specific 

services for critical applications. The primary 

goal of this approach is to ensure that 

frequently accessed tables, partitions, or 

objects are predominantly accessed by a 

designated instance, thereby reducing the 

need for inter-instance communication. This 

can be achieved by implementing a targeted 

allocation strategy where database resources 

are distributed based on access patterns and 

workload requirements. 

By limiting the number of instances 

that need to access a particular set of data 

blocks, the solution effectively reduces inter-

instance communication required for cache 

fusion. This minimizes wait events associated 

with global cache management, leading to 

improved performance, lower transaction 

latency, and a more balanced utilization of 

database resources. Moreover, this instance-

specific allocation approach allows database 

administrators to implement fine-tuned 

performance optimizations [3], such as 

prioritizing access to specific data partitions, 

reducing network traffic between nodes, and 

improving response times for mission-critical 

applications. Through careful analysis of 

workload distribution, database 

administrators can design an allocation 

strategy that ensures optimal data locality. 

This involves evaluating historical access 

patterns, transaction frequency, and 

contention hotspots to determine which data 

objects should be assigned to specific 

instances. Additionally, integrating load-

balancing mechanisms and failover 



The Eastasouth Journal of Information System and Computer Science (ESISCS)   

Vol. 1, No. 01, August, pp. 65 - 68 

 

67 

capabilities ensures that the system remains 

highly available and resilient, even in the 

event of node failures. By adopting this 

structured and instance-specific block 

allocation approach, organizations running 

Oracle RAC can significantly enhance 

database performance [4], reduce contention-

related delays, and ensure a more efficient 

and scalable production environment. 

3. HOW THE SOLUTION WORKS 

Step-by-Step Breakdown The first 

step in the implementation of this solution is 

to analyze the application’s database 

workload and identify the tables or objects 

that are frequently accessed. High-traffic data 

blocks that are commonly accessed by 

multiple instances tend to cause the most 

contention when distributed across the entire 

cluster. To achieve this, tools such as 

Automatic Workload Repository (AWR) 

reports, V$Session, and V$SQL views can be 

utilized to pinpoint high-volume tables or 

objects that contribute to inter-instance 

contention. Once the critical data objects have 

been identified, the next step is configuring 

node-specific services in Oracle RAC. Each 

node within the RAC cluster is configured 

with a dedicated service that binds specific 

application workloads to the corresponding 

node. This service configuration ensures that 

applications connect only to the nodes that 

store their most relevant data. The Oracle 

RAC service configuration is designed to 

improve locality by ensuring that an 

application instance accesses data from the 

same node, thus reducing the need for cross-

node cache fusion [5]. The most critical step in 

reducing wait events is the partitioning of 

high-access tables and data objects. In Oracle 

RAC, it is possible to partition tables so that 

specific partitions are stored on specific 

nodes. This partitioning reduces the need for 

inter-node communication by ensuring that 

frequently accessed data is localized to a 

particular node. After configuring services 

and partitioning data, it is essential to validate 

the solution's effectiveness. This can be 

achieved by benchmarking the application 

performance before and after implementing 

the solution. 

4. RESULTS 

The implementation of this solution 

led to notable improvements in application 

performance. Specifically, there was a 

significant reduction in wait events related to 

cache fusion [5], including gc cr request, gc 

buffer busy, and gc current block busy. These 

wait events, which are typically caused by 

excessive inter-instance communication, were 

substantially minimized due to the instance-

specific block allocation strategy. By 

partitioning data and binding application 

workloads to specific nodes, the data that the 

application required was largely available 

locally, reducing the need for inter-instance 

block transfers. This resulted in fewer global 

cache synchronization requests, leading to a 

more streamlined and efficient database 

operation. The solution resulted in a drastic 

decrease in application response times, both 

for read and write operations. As inter-

instance communication was minimized, 

transaction processing became faster, leading 

to enhanced user satisfaction and better 

application performance. Business-critical 

operations that previously suffered from high 

wait times and unpredictable performance [6] 

behavior saw measurable improvements in 

speed and reliability. The application 

performance became more predictable, 

allowing for better capacity planning and 

improved user experience. 

The distribution of the application 

workload across the nodes was more 

balanced, leading to better CPU and I/O 

utilization. Since each instance predominantly 

accessed its local data blocks, there was a 

significant reduction in contention for shared 

resources. This balance improved overall 

system throughput and ensured that 

computing resources were efficiently 

allocated, preventing CPU and memory 

bottlenecks. In addition, unnecessary network 

traffic between nodes was reduced, 

improving overall system efficiency and 

lowering the operational costs associated with 

excessive data movement. Comprehensive 

performance monitoring and benchmarking 

confirmed these improvements. Metrics such 

as transaction latency, query execution times, 

and system throughput indicated a consistent 



The Eastasouth Journal of Information System and Computer Science (ESISCS)   

Vol. 1, No. 01, August, pp. 65 - 68 

 

68 

reduction in wait times and enhanced overall 

database efficiency. By adopting this 

approach, organizations were able to 

significantly improve their Oracle RAC 

environments, leading to a more scalable and 

high-performance database infrastructure. 

5. CONCLUSION 

By binding critical application 

workloads to specific Oracle RAC nodes and 

optimizing the partitioning of high-traffic 

data objects, this solution provides a scalable 

and efficient method for reducing Oracle RAC 

wait events. The targeted allocation of 

frequently accessed data minimizes inter-

instance communication, particularly cache 

fusion, which is one of the most significant 

contributors to performance bottlenecks in 

Oracle RAC environments. By implementing 

this strategy, database administrators can 

significantly enhance application response 

times, reduce contention for shared resources, 

and improve overall database performance. 

This approach is especially beneficial for 

large-scale applications that experience high-

volume, transactional workloads with 

significant cache contention. By ensuring that 

applications primarily access data stored on 

their designated nodes, organizations can 

mitigate the inefficiencies associated with 

excessive cache fusion operations. The 

localized access strategy not only improves 

query and transaction speeds but also 

enhances database stability and consistency. 

Furthermore, the scalability of this solution 

allows businesses to accommodate growing 

workloads without experiencing significant 

degradation in performance. As data volumes 

and user demands increase, organizations can 

extend this strategy by further refining data 

partitioning [7] and workload distribution to 

maintain optimal efficiency. This ensures that 

Oracle RAC continues to deliver high 

availability [8] and fault tolerance while 

maintaining superior performance. By 

reducing wait events and optimizing data 

access, businesses can achieve better 

scalability, improved resource utilization, and 

enhanced end-user satisfaction, all while 

maintaining the high availability [8] and fault 

tolerance that Oracle RAC is known for. The 

instance-specific block allocation approach 

presents a sustainable and effective method 

for optimizing Oracle RAC environments, 

ensuring that mission-critical applications run 

smoothly with minimal latency and 

maximum efficiency.

REFERENCES 

[1] Oracle Corporation, “Oracle Real Application Clusters Documentation,” 2023. 

https://docs.oracle.com/cd/E11882_01/rac. 

[2] Oracle Support, Reducing Cache Fusion Wait Events in Oracle RAC. Oracle White Papers., 2020. 

[3] J. Smith, High-Performance Oracle RAC: Strategies for Optimization. Pearson, 2021. 

[4] I. M. Review, “Case Studies in Oracle RAC Performance Optimization,” 2021. 

https://www.itmanagementreview.com 

[5] Database Journal, “Understanding Cache Fusion Performance in Oracle RAC,” 2023. 

https://www.databasejournal.com. 

[6] P. Kumar, Advanced Techniques in Oracle RAC Performance Tuning. Springer., 2020. 

[7] S. P. Blog, “Improving Oracle RAC Performance Through Data Partitioning and Instance Services,” 2022. 

https://www.sqlperformance.com. 

[8] Oracle Press, Oracle RAC Best Practices for High Availability. McGraw-Hill., 2022. 

 


