
The Eastasouth Journal of Information System and Computer Science

Vol. 2, No. 03, April 2025, pp. 183-186

ISSN: 3025-566X, DOI: 10.58812/esiscs.v2i03

Journal homepage: https://esj.eastasouth-institute.com/index.php/esiscs

Identifying and Managing Noisy Neighbors in Multi-Tenant

PostgreSQL Deployments (On-Premise)

Murali Natti
Lead Database Engineer | DevOps Lead | Database Architect | Cloud Infrastructure Solutions Expert | DB

Security Lead

Article Info ABSTRACT

Article history:

Received Mar, 2025

Revised Apr, 2025

Accepted Apr, 2025

 In on-premise multi-tenant PostgreSQL deployments, multiple tenants

share the same physical infrastructure to maximize resource utilization

and reduce operational costs. However, this shared environment can

give rise to significant resource contention, particularly when one

tenant exhibits the “noisy neighbor” effect—where its workload

consumes a disproportionate amount of CPU, memory, or disk I/O

relative to others. This unbalanced resource consumption can lead to

widespread performance degradation, manifesting as increased query

latency, reduced throughput, and overall service instability. The

present article investigates the challenges inherent in multi-tenant

setups, focusing on the detection and management of noisy neighbors.

It explores both native PostgreSQL monitoring techniques (such as

system views and performance statistics) and external solutions

including Linux control groups (cgroups) for isolating and limiting

resource usage. Additionally, the article outlines best practices for

proactive monitoring, query optimization, and resource allocation to

ensure a balanced and efficient multi-tenant environment. By

providing a comprehensive framework for understanding and

mitigating the noisy neighbor phenomenon, this work aims to equip

database administrators and system architects with effective strategies

for maintaining robust performance, even under heavy and unevenly

distributed workloads.

Keywords:

CPU Utilization;

Disk I/O;

Linux cgroups;

Multi-Tenancy;

Noisy Neighbors;

Performance Tuning;

PostgreSQL;

Query Optimization;

Resource Contention;

System Monitoring

This is an open access article under the CC BY-SA license.

Corresponding Author:

Name: Murali Natti

Institution: Lead Database Engineer | DevOps Lead | Database Architect | Cloud Infrastructure Solutions

Expert | DB Security Lead

Email: murali.natti@gmail.com

1. INTRODUCTION

Multi-tenancy in PostgreSQL has

emerged as a popular architecture for hosting

multiple independent clients or applications

within a single instance, primarily due to its

ability to reduce operational overhead and

lower costs [1]. In this model, tenants can be

isolated in various ways: one common

approach involves placing each tenant in its

own schema within a single database, while

another strategy assigns each tenant a

separate database, yet all share the same

physical server infrastructure [2]. This

flexibility allows organizations to maximize

resource utilization and streamline

administrative processes, as they do not need

to maintain entirely separate hardware

environments for each client. However, while

multi-tenancy [3] offers significant economic

and operational advantages, it also inherently

https://esj.eastasouth-institute.com/index.php/esiscs
https://creativecommons.org/licenses/by-sa/4.0/
mailto:murali.natti@gmail.com

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 183-186

184

introduces the risk of resource contention.

Because all tenants draw from the same pool

of resources—such as CPU, memory, and disk

I/O—any imbalance in workload distribution

can lead to performance degradation. When

one tenant, due to inefficient query execution,

misconfigured workloads, or unexpected

usage spikes, consumes a disproportionate

share of the available resources, it can

adversely affect the performance of other

tenants sharing the same infrastructure. This

phenomenon is commonly known as the

"noisy neighbor" problem. The noisy neighbor

not only slows down the processing of queries

but can also lead to increased latency and

reduced throughput for the entire system.

This article delves into the various challenges

that arise from resource contention in multi-

tenant PostgreSQL deployments. It discusses

the underlying causes of the noisy neighbor

effect and provides comprehensive guidance

on how to identify such issues through

effective monitoring techniques, including

PostgreSQL’s built-in system views and

external resource management tools.

Furthermore, it outlines practical strategies

for managing and mitigating the impact of

noisy neighbors. By applying these

approaches, database administrators and

system architects can better isolate resource-

intensive workloads and maintain optimal

performance across all tenants, ensuring a

balanced and efficient multi-tenant

environment.

2. IDENTIFYING NOISY

NEIGHBORS

A noisy neighbor in a multi-tenant

environment is defined as a tenant whose

resource consumption disproportionately

exceeds that of others, negatively impacting

shared resources. This excessive usage can be

attributed to various factors, including

inefficient query execution, suboptimal

database configurations, or sporadic

workload surges. Since PostgreSQL does not

natively isolate resource usage by tenant,

administrators must rely on a combination of

PostgreSQL’s built-in views and external

system monitoring tools. For instance, the

system views such as pg_stat_activity and

pg_stat_statements provide real-time data on

active sessions and query performance

metrics. By monitoring these views,

administrators can pinpoint long-running or

resource-intensive queries that may signal a

noisy neighbor. Additionally, using Linux

tools like top, htop, or ps allows for

correlating PostgreSQL process IDs with CPU

and memory usage. Disk I/O monitoring with

tools like iostat or iotop, alongside insights

from PostgreSQL metrics such as shared

buffer activity and WAL generation, further

aids in detecting tenants that may be

overloading the system.

3. TECHNIQUES FOR

MANAGING NOISY

NEIGHBORS

Once identified, managing noisy

neighbors requires a multi-faceted approach

that combines resource tracking with

proactive tuning [4]. One effective strategy

involves enforcing resource limits at the

system level. Although PostgreSQL itself does

not support tenant-specific resource isolation

[5], Linux control groups (cgroups) can be

used to limit CPU and memory usage for

PostgreSQL processes. By assigning processes

to specific cgroups, administrators can restrict

a tenant’s resource consumption and mitigate

the adverse effects of a noisy neighbor.

Another crucial aspect of management is

query optimization [6]. Often, noisy behavior

is driven by inefficient queries. Using

commands such as EXPLAIN ANALYZE

helps in identifying bottlenecks and

optimization [7] opportunities. Regular

maintenance—such as vacuuming to remove

dead tuples and proper indexing—also plays

a vital role in ensuring that each tenant’s

workload runs efficiently without

monopolizing resources. In addition to

system-level controls and query tuning [8],

third-party monitoring tools offer detailed

insights into tenant-specific activities. Tools

like pgBadger, Prometheus (with PostgreSQL

exporters), or New Relic provide granular

visibility into resource usage, enabling

administrators to set up automated alerts

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 183-186

185

when resource consumption exceeds

predefined thresholds. Such proactive

monitoring ensures that any resource

imbalance is addressed promptly.

4. BEST PRACTICES FOR

PREVENTION

Preventing the emergence of noisy

neighbor issues before they take root is a

proactive strategy that can save significant

effort and maintain overall system stability.

One effective method is to allocate dedicated

tablespaces for individual tenants. By doing

so, disk I/O operations become isolated; each

tenant’s data is managed separately, which

reduces the chance that high I/O demands

from one tenant will impact the performance

of others. In addition to this isolation at the

storage level, using connection pooling

solutions such as PgBouncer is highly

beneficial. These tools efficiently manage and

distribute database connections, ensuring that

no single tenant can overwhelm the server

with an excessive number of simultaneous

connections. Regular workload profiling is

another critical practice. By routinely

analyzing and reviewing tenant-specific

query patterns and schema designs,

administrators can identify potential

performance bottlenecks early. This ongoing

evaluation helps ensure that every tenant

operates within predefined performance

parameters and that the system maintains a

balanced resource allocation across all

workloads. Furthermore, implementing

query timeouts is essential; this measure

prevents long-running and resource-intensive

queries from monopolizing system resources

indefinitely, which can lead to cascading

performance issues. Overall, these best

practices form a comprehensive approach to

preemptively mitigating noisy neighbor

problems by ensuring that resource

consumption is balanced and that each

tenant's workload is effectively contained.

5. CONCLUSION

Effectively managing noisy neighbors

in multi-tenant [9] PostgreSQL deployments

is not merely a reactive task—it is a proactive

strategy that underpins system performance,

fairness, and overall user satisfaction. When a

single tenant begins to consume

disproportionate resources, it can trigger a

cascade of performance issues that ripple

through the shared environment, affecting

query latency, throughput, and even system

stability. To counteract these challenges, a

multi-pronged approach is essential. By

leveraging PostgreSQL’s native monitoring

views such as pg_stat_activity and

pg_stat_statements, administrators can gain

real-time insights into query behavior and

resource usage. These views, when used

alongside external system tools like Linux

control groups (cgroups), enable a dynamic

method for isolating and containing resource-

heavy workloads [10]. Furthermore, the

implementation of proactive measures such

as dedicated tablespaces for individual

tenants helps isolate disk I/O operations,

ensuring that a single tenant's high demand

does not interfere with the performance of

others. Connection pooling solutions like

PgBouncer play a vital role as well, as they

help to efficiently manage and distribute

database connections, thereby preventing any

one tenant from overwhelming the server

with excessive simultaneous requests.

Rigorous query optimization practices and

the enforcement of query timeouts ensure that

long-running, resource-intensive queries do

not hog critical system resources indefinitely.

By continuously profiling workloads [10] and

adjusting configurations in real time,

organizations can enforce strict resource

limits that maintain an equilibrium across all

tenants. This proactive stance not only

mitigates the immediate impacts of noisy

neighbors but also lays the foundation for a

scalable, high-availability system that adapts

to varying load conditions. In essence, a

comprehensive strategy—encompassing

native monitoring, external resource

management, and rigorous optimization—

ensures that multi-tenant [3] PostgreSQL

environments can meet the diverse

performance demands of modern

applications while maintaining a stable and

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 183-186

186

efficient operational state for all users.

REFERENCES

[1] B. Momjian, PostgreSQL: Introduction and Concepts. Addison-Wesley., 2020.

[2] M. Stonebraker, Scaling Databases for the Cloud Era. Morgan Kaufmann., 2019.

[3] W. Shim and J. Kim, “Database Multi-Tenancy: Challenges and Approaches,” IEEE Trans. Knowl. Data Eng., 2018.

[4] M. Finkel, Mastering PostgreSQL: Advanced Performance Tuning. Packt Publishing., 2022.

[5] S. Roy and A. Gupta, Effective Resource Isolation in Shared Database Systems. Springer., 2021.

[6] D. Ferguson, PostgreSQL High-Performance Optimization. O’Reilly Media., 2021.

[7] PostgreSQL Global Development Group, “PostgreSQL Documentation: Performance Optimization,” 2023.

https://www.postgresql.org/docs/

[8] T. Nguyen, Practical Techniques for Database Performance Tuning in Multi-Tenant Environments. Elsevier., 2022.

[9] J. Peterson, Managing Resource Contention in Multi-Tenant Systems. ACM Digital Library., 2020.

[10] SQL Performance Blog, “Optimizing PostgreSQL Performance for High-Transaction Workloads,” 2021.

https://www.sqlperformance.com

