
The Eastasouth Journal of Information System and Computer Science

Vol. 2, No. 03, April 2025, pp. 219-245

ISSN: 3025-566X, DOI: 10.58812/esiscs.v2i03

Journal homepage: https://esj.eastasouth-institute.com/index.php/esiscs

Shift Left Security

Gaurav Malik1, Prashasti2
1 The Goldman Sachs Group, Inc. Dallas, Texas, USA

2 Application security engineer, The New York Times, Dallas, Unites States

Article Info ABSTRACT

Article history:

Received Apr, 2025

Revised Apr, 2025

Accepted Apr, 2025

 Shift Left Security is a proactive approach to software development

that aims to integrate security measures at the beginning of the

software development lifecycle (SDLC) and at the design and

development phases. In the past, security for software development

has been reactive, looking for vulnerabilities at the test or deployment

stages. However, this method has proven ineffective in the face of the

complexity of these modern software systems and the frequency of

cyber-attacks. Shift Left Security instead highlights embedding security

practices from the beginning to capture vulnerabilities and detect and

remediate them at the very beginning before they even hit the

production stage. Continuous security testing, early risk assessment,

and real-time feedback loops to rectify vulnerabilities immediately,

given that solving them is critical during development, are a part of the

proactive model. Shift Left Security integrates security into the SDLC,

ensuring the security posture of the software applications is

strengthened, post-release remediation is reduced, and time to market

is accelerated. The significant advantage of it is that it lets organizations

open up to a conversation around security as early as possible without

the risk of it becoming an issue. Shift Left Security is an area of interest

that this study explores in terms of its principles, benefits, challenges,

and tools. This serves as a valuable offering that offers a hands-on

approach to adopting this approach by organizations to achieve more

secure, resilient software products through improved development

efficiency and better protection against emerging cyber threats.

Keywords:

Continuous Security Testing;

DevOps and Agile;

Proactive Security;

Shift Left Security;

Software Development Lifecycle

(SDLC);

Vulnerability Mitigation

This is an open access article under the CC BY-SA license.

Corresponding Author:

Name: Gaurav Malik

Institution: The Goldman Sachs Group, Inc. Dallas, Texas, USA

Email: Gauravv.mmallik@gmail.com

1. INTRODUCTION TO SHIFT

LEFT SECURITY

Shift Left Security is a means for

security in the software development lifecycle

(SDLC), and it believes that proactively

addressing vulnerabilities early on in SDLC

instead of being reactionary is more

beneficial. Standardly, security in software

development has been a reactive science that

works around discovering and fixing

vulnerabilities at the testing time or at some

point after the product is deployed. However,

insufficient as this approach has turned out to

be in the current world, where cyberattacks

have gotten more complicated and more

sophisticated over time, the software systems

they face have become increasingly complex.

Given this, security threats associated with

software applications have been ever-present

https://esj.eastasouth-institute.com/index.php/esiscs
https://creativecommons.org/licenses/by-sa/4.0/
mailto:Gauravv.mmallik@gmail.com

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 219-245

220

and ever more challenging to predict with the

rapid pace of development enabled by

methodologies such as Agile and DevOps.

The reactive security models are ineffective

and require a shift towards proactive security

solutions.

As the complexity of modern

software systems like cloud platforms, mobile

applications, and IoT devices has grown, so

has the potential attack surface for cyber

threats. These are very closely interconnected

systems that organizations are trying to

innovate quickly, and with that, the need for

information security mechanisms has never

been greater. As an inevitable consequence of

Agile and DevOps methodology, to scale

speed, developers often compromise security

by putting functionality and delivery over

what may or may not be security risks. In this

sense, Shift Left Security is not just a best

practice but a necessity. This means

embedding security in the development

process and not just post-development. It

allows organizations to identify and solve

risks before they become critical

vulnerabilities. By implementing a Shift Left

strategy, organizations can put security as an

agenda item on the development lifecycle to

avoid threats to the products and services

getting exploited when moving to the

production environment.

As is the case today, major drivers for

adopting Shift Left Security are the growing

frequency and sophistication of cyberattacks.

As continually seen, attackers keep refining

their tactics to take advantage of weaknesses

as early as possible in the SDLC, and

traditional security approaches tend to take

place later but cannot prevent weaknesses

early enough. The delay in identifying and

fixing the security flaws results in a high

remediation cost after it gets deployed.

Security breaches, ranging from financial

losses to data theft and damage to an

organization's reputation, can be devastating.

Shift Left Security works to solve these

problems at the beginning of the Security

development lifecycle (Shift Left) by focusing

on detecting and mitigating risks early in their

life cycle. Integrating security practices from

the initial stages of SDLC will help

organizations detect vulnerabilities in

advance and eliminate the requirement for

resource time wasting regarding fixes after the

application deployment. Early catching issues

lower the costs of patching and remediating

associated security flaws.

Shift Left Security provides the base

of any security optimization and gives an

organization a base to start with in terms of its

security posture. Before any code is written,

introducing security during design allows

development teams to foresee and prevent

publishing this type of vulnerability.

Continuous security testing like static

application security testing (SAST), dynamic

application security testing (DAST), and

software composition analysis (SCA),

combined with constant monitoring of

vulnerabilities in produced runtime, ensures

no security vulnerability is introduced in the

production runtime. Protecting against

vulnerabilities in production reduces the

chance of a security exploit and helps secure

security outcomes through this proactive

approach. If issues are detected early,

resolutions can be made faster, remediation

quicker, release cycles shorter, and the

product's security improved. Shift Left

Security helps create a culture of security

within the organization. It ensures that

security doesn't just come at the end of the

development life cycle but is business as usual

and integrated into every step.

This study explores the principles of

Shift Left Security and its benefits, tools, and

challenges. Next, it will present how this

approach is successfully implemented in the

SDLC space, discuss some of the limitations of

traditional security models, and see it in

actual real-world applications through a few

case studies. By learning from the successful

implementation of Shift Left Security,

organizations will have the necessary tools

and insights to address the significant security

concerns of the modern digital environment.

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 219-245

221

2. THE EVOLUTION OF

SECURITY IN THE SOFTWARE

DEVELOPMENT LIFECYCLE
2.1 Traditional Security Models in

Software Development

In the past, software security

was considered an afterthought that

was ‘done after the code has been

written or delivered’. The test amount

had to be increased and focused on

the final product. Typically, allowing

this to happen over time results in

identifying vulnerabilities that do not

occur until after the testing phase or

once the product has been deployed,

adding to the overall remediation

costs associated with it. Security has

been regarded as a second-level

concern behind functional testing and

performance. However, this

approach was antagonized because it

was reactive and could not stop

security flaws from entering the

production environment.

Figure 1. Secure SDL practices

2.2 The Limitations of Traditional

Security Approaches

Traditional security models

have several shortcomings that make

them unsuitable for developing

modern software. Currently, security

is rarely addressed until the last

phases of development or even later

after deployment, and no effort is

made to fix vulnerabilities once they

are discovered. However, in most

cases, these flaws go unnoticed until

the application is deployed, and then

costly patching and remediation work

must be conducted. Moreover, the

traditional security approach

overlooks the fast pace of modern

development, where multiple

updates are happening frequently,

which increases the chances of

security issues falling through the

cracks. When IT security systems,

particularly software applications, are

involved in increasingly complex

interconnected systems, and cyber

threats are becoming more dynamic,

direct and reactive security measures

are no longer viable [1].

2.3 Emergence of DevOps and Agile

Methodologies

DevOps and Agile

methodologies came and marked the

advent of a paradigm in software

development. However, these

approaches stressed collaboration,

CD, and CI and were key in making

the software release possible at a

much greater pace than before. The

need for security to be integrated

throughout the development process

derives from Agile’s iterative cycles

and DevOps’ focus on collaboration

between development, operations,

and security teams. Security was no

longer a ‘tacked on’ commodity in the

tail of the development cycle,

something that could be added at the

end. The shift saw the birth of Shift

Left Security, a practice that urges the

adoption of security in the earlier

stages of the SDLC [2].

2.4 The Shift towards Integrating

Security Early in the Development

Process

As more and more of the

adoption of DevOps and Agile,

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 219-245

222

enterprises began to come to terms

with the need to integrate security

into each launch stage. The term shift

left describes the movement of

security practices earlier within the

SDLC such that security activities

occur during the design and

development rather than hậu Actions.

With the CI/CD pipeline, the

developers do continuous tests on

their code for vulnerabilities and

provide immediate inputs to address

the security issue before they make it

a part of the final product, all by

integrating security tools like SAST,

DAST, and SCA. Similarly, by taking

a proactive approach, security

outcomes are improved and

ultimately pay off in terms of time

and cost spent late in the cycle

patching rather than coordinating

towards the same [3].

Figure 2. Understanding the Differences Between Agile & DevSecOps

3. KEY PRINCIPLES OF SHIFT

LEFT SECURITY
3.1 Early Risk Assessment and

Mitigation

Early Risk Assessments

during the Software Development

Lifecycle (SDLC) are a significant

principle of Shift Left Security [4].

This proactive approach embeds

security from the very beginning—

something that is not done when it is

added in the end. Using the early

design phase to evaluate risks and

threats ensures development teams

will know what to watch for early

before they crack their keyboards to

write. This enables teams to anticipate

security issues and tackle them in

earlier stages that are cheaper and

easier to resolve. In the early stage,

threat modeling and risk assessment

frameworks can be used to find

possible attack vectors and determine

the architecture's risks. With this

approach, security becomes a part of

the software design rather than a

separate layer attached to the

software. Therefore, organizations

reduce any vulnerabilities by doing a

lot of security-related work as early as

possible during the development

cycle, significantly reducing the

chance of any crucial breach in

production. Moreover, by making

risk assessments early and as a core

part of the SDLC, organizations can

bypass the disruption from a reactive

security fix typically required after

the software is deployed.

3.2 Proactive Security Testing

Shift Left Security also

maintains another cornerstone of

proactive security testing, whereby

security vulnerabilities are addressed

at every step and throughout the

SDLC, not in a final post-

development stage. First of all, it's an

approach of embedding security

testing tools such as Static

Application Security Testing (SAST),

Dynamic Application Security

Testing (DAST), and Software

Composition Analysis (SCA) into the

development pipeline. Applying

these tools to CI/CD pipelines makes

it possible to scan codebase on the

iterations themselves as soon as the

vulnerabilities come in rather than

after the development cycle. This

proactive approach is similar to the

dynamic memory inference network

model for identifying and addressing

issues, as discussed, where systems

continuously learn and adapt to

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 219-245

223

handle emerging challenges [5]. By

continuously testing and scanning for

vulnerabilities during development,

organizations can identify and

resolve security flaws at the earliest

stages, ultimately enhancing the

overall security posture of the

software product.

Proactive security testing

ensures that security does not happen

once and is passed over—how it

might get treated in manual

development. Instead, it is something

that is monitored and rewritten as a

part of the development process.

Those tools give immediate feedback

on the code quality and security flaws

so that developers can discover and

fix them quickly. This way, the

software development process does

not delay the integration of such tools

while ensuring the security integrity

of the software. Consequently,

vulnerabilities are discovered earlier,

minimizing the time and resources

necessary for this problematic fix and

ensuring development performance.

This way, continuous testing

guarantees that security stays in the

spotlight from Day 1 of development

as issues are addressed when they

emerge [6].

Figure 3. From Reactive to Proactive

3.3 Continuous Monitoring and

Feedback Loops

Due to Shift Left Security,

security is not isolated to one point in

development; it is continuously

monitored and fed back to be

evaluated in a live state as the code

grows [7]. Our approach here is

dynamic, where the development

process picks up some security

constantly and provides feedback to

the developer on the threats and

vulnerabilities. With real-time

monitoring tools, developers can be

notified when a security problem

arises and resolve the potential

vulnerability before compromising

the system. Because of this

continuous feedback loop, security

issues can be remediated quickly, and

the possibility of their exploitation

diminishes before reaching the

production environment. Monitoring

tools can be integrated into the

development pipeline, keeping

organizations proactive as the

software is being developed in real

time.

The development process

needs to be agile but remain firm in

security controls, which is essential

because this feedback loop helps the

development process stay effective. It

also provides all development,

security, and operations teams and

opportunity to collaborate to quickly

flag and fix security issues by the

responsible stakeholders. It allows

continuous risk management,

identifying patterns of security

incidents to review, and getting

insights on what should be improved,

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 219-245

224

thus allowing the teams to anticipate

future threats much more effectively.

This approach is similar to the choice

between eventual consistency and

strong consistency in micro services,

where the balance between flexibility

and reliability is key to making

informed decisions that improve

system performance and reduce

potential risks [8]. By adopting a

similar mindset, development teams

can enhance their security processes

and proactively address

vulnerabilities as they arise.

3.4 Collaboration between Developers,

Security Teams, and Operations

Teams

Shift Left Security advocates

for collaboration between the

developers and the security teams to

ensure that security is a shared

responsibility, not a siloed action. In

the traditional approach to

development, security was further

separated from the rest of the process,

where secure testers and auditors

performed testing and audits after

most of the code was already written

[9]. These missed vulnerabilities, or

late-stage discovery and remediation

efforts, would often be costly.

However, with Shift Left Security, all

SDLC stakeholders, holder’s

developers, developers, security

experts, and ops staff are jointly

embedded with security measures

throughout each development stage.

Not only do security concerns

transcend from design and coding

through to deployment and

operations, but the collusion of the

two team’s means that any issues that

arise during any step of the cycle are

eliminated quickly [10]. This allows

developers to become more aware of

the possibilities of vulnerabilities and

practice writing secure code from the

beginning. At the same time, security

teams can provide advice and

expertise in practice. Consequently,

operations teams are crucial in

making sure that secure deployment

processes are enforced and that

production systems are secure. Shift

Left Security's predilection for a

culture of continuous communication

and shared responsibility between

teams makes it easy to instantly spot

and fix security risks in a smoother

and more organized way. In the long

run, this helps to bring more secure

software because it fosters the

collective work of all the teams

involved in the SDLC [11].

Figure 4. Shift-Left Security

4. BENEFITS OF SHIFT LEFT

SECURITY

Table 1. Benefits of Shift Left Security

Benefit Description

Reduced Vulnerability

Exposure
Early detection of vulnerabilities minimizes exposure in production.

Faster Detection &

Remediation

Security issues are caught early, leading to quicker fixes and shorter release

cycles.

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 219-245

225

Benefit Description

Cost Efficiency Identifying issues early reduces the costs of post-release remediation.

Enhanced Developer

Responsibility

Developers take on more security responsibility, fostering a culture of

security.

Improved Security Posture Proactive security reduces vulnerabilities, creating more secure software.

4.1 Reduced Vulnerability Exposure

The listened vulnerability

exposure is one of the most significant

advantages of Shift Left Security [12].

As it addresses security concerns at

the early stage of the development

cycle, the organization can find and

fix vulnerabilities before they become

embedded into codebase, thereby

reducing the likelihood of them being

compromised in the online

environment. Proactive testing and

continuous monitoring help early risk

assessments find security flaws in the

design and production stages and

minimize the possibility of leaving

security flaws upon building the final

product. The early identification of

vulnerabilities provides a shorter

window for attackers to exploit

weaknesses. This proactive approach

assures that security issues are

resolved before they have any

bearings on the production

environment, which in turn means

the software shipped has been made

vulnerability exposure reduces the

risk profile of the organization at

large and the cost of such costly

security breaches with subsequent

damage to reputation and trust.

Organizations reduce their exposure

to vulnerabilities early, thus allowing

the quality and security of their

software to improve, and they can

deliver more reliable products to their

users.

Figure 5. Vulnerability-finding process and influencing factors

4.2 Faster Detection and Remediation of

Vulnerabilities

However, with Shift Left

Security, it is possible to shorten the

detection and remediation of

vulnerabilities, ultimately shortening

the release cycles and improving the

development process. Using these

early stages of development to

perform security testing helps find

vulnerabilities in codebase when they

occur instead of when they are too

late, at the end of the development

cycle, or after deployment. This early

detection keeps delays to a minimum

as it allows developers to fix the

issues in real time and saves a lot of

time spent fixing things post-release,

either in patches or hotfixes. Securing

is a continuous problem when

integrated into the CI/CD pipeline,

which requires constant monitoring

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 219-245

226

and proactive security testing.

Speeding up problems, fixing

processes, and reducing chances of

overlooking security issues.

_Duplicates help organizations meet

deadlines faster and with more

integrity by allowing them to fix

vulnerabilities faster._ In the end,

faster detection and resolution of

security flaws help simplify the

development process and the time to

market for delivering secure products

[13].

4.3 Enhanced Developer Responsibility

and Security Awareness

Shift Left Security promotes

security as a cultural phenomenon,

allowing developers to take more

responsibility for code security, thus

being more and more needed.

Typically, in the traditional

development models, security was

considered the job of a professional

security team or testing team alone.

But by pushing security into the

earlier stages of the development

lifecycle, ShiftLeft Security puts the

responsibility of writing secure code

into the developers ' hands and rushes

developers to write secure code from

the onset. It also encourages

developers to follow the best coding

security practices like proper input

validation, secure data handling, and

prevention of probable coding

vulnerabilities like SQL injection or

cross-site scripting (XSS). With

security becoming a shared

responsibility throughout the

different stages of development,

developers learn how to look for and

eliminate security risks throughout

the coding process, providing them

with the knowledge and tools to do so

without security professionals. In

addition to reducing the risk of

introducing vulnerabilities, this

improved responsibility also makes

the development team more aware of

security in general, leading to a more

security-conscious culture. This is

how Shift Left Security takes control

of security by giving developers the

authority to get the bugs fixed as early

as possible in the process — and that

shifts the development of more secure

software products.

4.4 Cost Efficiency in the Long Run

While the initial investment

of tools, training, and process changes

will be needed to adopt Shift Left

Security, it will ultimately save a great

deal in the long term [14]. Once the

software is deployed, identifying and

eliminating vulnerabilities in the

software development process is

much less expensive than remedying

them afterward. Worst of all, security

vulnerabilities that result in data

breaches or even evidence of

tampering can all cost significant

amounts in post-release patches,

hotfixes, and emergency remediation

costs. On the contrary, if

organizations take security testing

and risk assessments into the early

stages — such as during the

architecture and design stage — the

early detection and resolutions of

issues will ensure no critical problems

arise, and the fixes and potential

resulting outlay of cash will be less

costly compared to a security breach.

In addition, early identification of

such vulnerabilities helps reduce the

dependency on rework, thus

reducing development time and

overhead costs. Implementing Shift

Left Security may involve an up-front

investment; however, long-term

savings in reduced remediation cost,

fewer security breaches, and faster

time-to-market outweigh the cost, so

it is a cost-effective strategy. Shift Left

Security reduces the number of

vulnerabilities in production,

reducing the resulting high costs

incurred due to post-release

fixes/security incidents.

4.5 Improved Overall Security Posture

Shift Left Security embeds

security into the entire development

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 219-245

227

lifecycle, leading to a more assertive,

more resilient security posture [15].

Suppose organizations prioritize

security early in the process and make

security a fundamental aspect of the

SDLC. In that case, they will be able

to catch vulnerabilities in each stage

of the development. It means an

active approach towards security

testing, monitoring, and collaboration

to keep security at the core of the

development process. This means

that these applications and systems

become more secure over time

because they are part of an ingrained

culture of development around

security. Cyberattacks won't succeed

as much due to early detection and

resolution of vulnerabilities. The

overall security covered at all ends

continues, and they will rule out any

damage it can cause before it occurs.

This allows organizations to keep a

fingernail-length distance from

security posture and prove that they

deliver secure and trusted products to

their end users. Shift Left Security is

not an afterthought or an end play but

a continuous and integral part of the

development process, strengthening

the overall security of the

organization's products.

Figure 6. ASPM (Application Security Posture Management)

5. IMPLEMENTING SHIFT LEFT

SECURITY IN

ORGANIZATION

Table 2. Common Security Tools Used in Shift Left Security

Tool Type Description Example Tools

Static Application Security

Testing (SAST)

Analyzes source code to identify

vulnerabilities before execution.
SonarQube, Checkmarx

Dynamic Application

Security Testing (DAST)

Tests running applications for real-time

vulnerabilities.
OWASP ZAP, Acunetix

Software Composition

Analysis (SCA)

Scans third-party libraries and open-source

components for vulnerabilities.
Black Duck, Snyk

CI/CD Integration
Automates security testing in the

development pipeline.

Jenkins, GitLab CI,

CircleCI

5.1 Identifying Security Gaps in Your

Current Development Process

Organizations must also

conduct an exhaustive audit of their

present development process before

implementing Shift Left Security to

identify any gaps or vulnerabilities in

security [16], It includes assessing the

current workflows and tools used for

development and practices to

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 219-245

228

ascertain where security may be

nonexistent or insufficient. However,

a thorough assessment should look

into how security gets integrated (or

dissolved) in each software

development life cycle (SDLC) phase,

from design to coding, testing, and

deployment. This audit usually

reviews past security incidents, finds

patterns of overlooked

vulnerabilities, and determines areas

of security checks that are either

rarely performed or never performed.

For instance, security assessments

may be done only at the final test

stage or post-deployment, resulting

in significant gaps in the majority of

the earlier phases of development. It

helps organizations identify which

areas have gaps and, prior, criticize

which shift left preshift-lifted be

enacted first. In early-stage code

review or while threat modeling,

identifying these gaps gives a target

for proactive security implementation

into the CI/CD pipeline.

Furthermore, an audit process that

involves all stakeholders

(development, security, and

operations team) on security makes it

a company responsibility. The idea is

to create a baseline where security is

constantly in the development cycle

rather than being added as an

afterthought.

5.2. Integrating Security into the CI/CD

Pipeline

Necessary for Shift Left

Security is integrating security into

the Continuous Integration and

Continuous Delivery (CI/CD)

pipeline [17]. This integration enables

its practices to be continuously

automated within the death

development process instead of

isolated stages or manual checks at

the end of the e-cycle. To allow

development teams to detect

vulnerabilities in real time as code is

written and incorporated into the

CI/CD pipeline, software security can

be automated via Static Application

Security Testing (SAST), Dynamic

Application Security Testing (DAST),

and other controls directly in the

CI/CD pipeline. By doing this,

security testing is never an

afterthought; it is always an integral

part of every code change, and

immediate feedback is provided to

the team to allow the issue to be fixed

as it is encountered. Automating

security checks at every commit or

push will enable teams to spot

vulnerabilities as they are developed

and not when they become

hardwired into the system. To

illustrate, an automated scan could

check for such items as new code is

pushed to a repository - when built

code and data are transplanted into

the stack for production. In CI/CD

integration, security gets

incorporated into the CI/CD lifecycle

as an embedded part of the process,

and developers cease functioning,

believing that security is an extra

burden that must be carried into their

workflow. As a result, it speeds up

software delivery while lowering the

chances that security vulnerabilities

will be discovered too late in the

development process.

5.3. Tools and Technologies for Shift Left

Security

To have Shift Left Security

effective, organizations should have

several tools and technologies to

combine security measures

throughout the SDLC. This technique

helps automate and streamline the

security testing process and makes

security an essential part of the

development workflow. Static

Application Security Testing (SAST)

tools, for example, would let

developers scan the source code for

security weaknesses like code

injection or insecure data dealing

with practices without executing the

code. These tools detect flaws in the

early stages of development, thus

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 219-245

229

reducing the chances of flaws

reaching the final product. On the

other hand, dynamic Application

Security Test (DAST) tools verify that

running applications for

vulnerabilities are used during a

running environment, such as cross-

site scripting (XSS) or SQL injection. It

allows this security to be tested in the

static code and running applications

and gets a broad picture of possible

vulnerabilities. Such tools are also

needed because many modern

applications rely on third-party

libraries or open-source components.

These tools use these dependencies

and scan for known vulnerabilities

that help to facilitate the solving of

security risk dependencies.

Moreover, CI tools such as Jenkins,

CircleCI, or GitLab allow integration

of these security tools in the

development pipeline and

automatically perform continuous

security validation. Apart from

detecting vulnerabilities, these tools

keep the organization compliant with

regulatory requirements, enforcing

industry standards, and

strengthening the rest of the

organization's security posture [18].

Figure 7. Shift Left Security: Transforming the Software Development Lifecycle

5.4. Building a Culture of Security in

Development Teams

For Shift Left Security to truly

work, organizations must create a

security culture among their

development teams [19]. This is

because the security no longer

belongs to the security professionals

alone. Still, it has become a shared

responsibility of every other

personnel—operations staff or the

developers. The way to start

developing a culture of security is by

training developers in secure coding

practices and persuading developers

to behave security aware all through

development. Security should be a

subject of conversation in team

meetings, and developers should

consider security an ongoing issue

rather than something completed and

done before shipping. Coverage

includes ensuring secure coding by

following a good user mindset, such

as input validation, proper secure

authentication, and error handling, as

part of the daily routine. It also

involves developing a security-first

mindset by enabling developers to

actively identify vulnerabilities

before committing them. Security

teams also need to work hand in hand

with developers, being able to give

insights and advice regarding how to

minimize the threat factors at the

design and coding stages. Such a

security culture not only cuts down

the risk of vulnerabilities slipping

through the space between the cracks

but also encourages collaboration

between traditionally separated

teams, leading to a more secure and

efficient development cycle. Security

involves embedding it in the

organization's values and making it

part of the routine [20]. All

organization personnel should share

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 219-245

230

this responsibility, not as something

to be outsourced [21].

5.5. Training and Upskilling Developers

on Secure Coding Practices

Shift Left Security is heavily

predicated on the approach's success

in terms of training and upskilling the

developers in secure coding practices.

The first line of defense is the

developers, who are responsible for

writing secure code and, therefore,

are a key part of the overall security

of the application. Secure coding

training should cover input

validation, proper dealing with

proprietary info, preventing SQL

injection, and securing authentication

configuration. The development

community should also consider this

training to understand common

security weaknesses like cross-site

scripting (XSS) and buffer overflows

so that the developers can recognize

and protect against them before they

are put into the code base. In addition,

they should also educate developers

on how to use security tools like

SAST, DAST, and SCA so that they

are aware of and familiar with these

tools from the time of development.

Upskilling is also extremely

important as threats still evolve and

hackers find ways to take advantage

of developers' existing vulnerabilities

and best practices. Now,

organizations need to invest in

educating developers through

workshops and certifications, for

example, external and internal

training sessions, to keep developers

more secure and up to date with

recent security threats and to teach

them how to protect themselves from

these dangers. Organizations

prioritizing developer training and

upskilling embed that security in

every development process meeting,

making it much less likely for

vulnerabilities to enter. Thus, their

software products tend to be much

more secure.

6. TOOLS AND TECHNOLOGIES

FOR SHIFT LEFT SECURITY
6.1. Static Application Security Testing

(SAST) Tools

One type of Static

Application Security Testing (SAST)

tool can analyze source code for

security vulnerabilities without the

developer having to execute the

program to find out [22]. These tools

take place in the codebase at an early

stage of development and discover

problems like insecure coding

practices like hardcoded credentials,

input validation errors, buffer

overflow...etc. The main advantage

of SAST is that the vulnerabilities can

be detected before the code is

executed or deployed, allowing them

to get fixed early in the SDLC. Being

incorporated into the development

environment, SAST tools are very

well suited for the design and

programming phases of the

development life cycle and readily

point out potential issues to the

developers. Therefore, organizations

can ensure that testing for security

happens continuously throughout

the development lifecycle by

integrating SAST tools into the CI /

CD pipeline, where security testing

is never optional and can be part of

the automated process that happens

whenever the code is changed. By

doing proactive testing,

vulnerabilities are caught before

they become embedded in codebase,

thus reducing the risk of later

security breaches. In addition, SAST

tools deliver a wide range of code

analyses, allowing them to look deep

into the source code and present an

exact and prioritizable list of

vulnerabilities that need to be fixed

by developers [23].

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 219-245

231

6.2. Dynamic Application Security

Testing (DAST) Tools

Dynamic Application

Security Testing (DAST) tools are

intended to test running applications

for vulnerabilities that may be

exploitable in a live environment.

Unlike SAST, DAST tools test the

application at runtime to find

runtime vulnerabilities like cross-site

scripting (XSS), SQL injection,

insecure API calls, and other runtime

security flaws. DAST tools

understand how an application

works exactly how a user would and

simulate the attacks in real time to

detect the vulnerabilities that even

regular static code analysis may

miss. Without these tools, the

security is purely theoretical and

cannot be validated in the actual

running environment; this gives us

an idea of what an application does

under attack. This is similar to the

method used in the detection and

classification of arrhythmia, where

real-time monitoring and analysis

are applied to detect anomalies that

might not be obvious in a static

context, as discussed by [24]. By

employing DAST tools,

organizations can gain a clearer

understanding of their application’s

vulnerabilities and address them

before they are exploited in the

production environment. DAST

tools identify flaws that can only be

found when the application is

running and hence cannot be

identified by static analysis.

Integrating DAST into the CI/CD

pipeline allows organizations to

continuously monitor their

applications for vulnerabilities and

patch things before they negatively

impact the production systems.

Using DAST enables the security of

an application to be tested against

real-world attack scenarios.

6.3. Software Composition Analysis

(SCA) Tools

Software Composition

Analysis (SCA) tools are applied to

scan for vulnerabilities within the

third-party libraries and open-

source components used to build an

application. The more modern

software development relies on the

code reused from libraries and

frameworks, open source, the more it

becomes essential to mitigate the

threats upon these external

dependencies in terms of security. At

compile time, SCA tools scan the

dependencies within the codebase to

look for known vulnerabilities,

licensing issues, and old

components, which could prove

risky to the security of the entire

application. Organizations can

integrate SCA tools into their

development process and verify that

their software does not unknowingly

bring in security vulnerabilities from

other sources. SCA tools give such

precise insight into which libraries or

packages are vulnerable that there is

no reason to waste time:

Development teams can quickly

update or replace them with secure

alternatives. This proactive approach

to managing dependencies prevents

the application from integrating

compromised components and

keeps the application secure during

its lifecycle. Therefore, it can be

stated confidently that SCA tools are

one of the essential components of

any Shift Left Security strategy since

their use enables organizations to

keep their software both secure and

compliant, safely limiting the risk of

third-party vulnerabilities [25].

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 219-245

232

Figure 8. Three core features of an SCA tool

6.4. Continuous Integration Tools and

Platforms

CI tools like Jenkins, GitLab,

Circles, Travis CI, and others help to

enable security practices throughout

the development lifecycle. CI tools

build and test the code automatically

and secure it even before the release,

allowing developers to do security

testing at every stage of the

development. Organizations can use

CI tools to guarantee that these

security checks will also be

automatically run when new code is

integrated into codebase. With this

continuous, automated process,

developers can catch vulnerabilities

early and demonstrate on an

ongoing basis that their security is

being continually validated as part of

the development lifecycle. With

SAST, DAST, and SCA security

testing tools, employing CI tools

means a seamless workflow to

integrate security testing tools into

the development process, with no

break in the development cycle and

live detection of any vulnerabilities

now. Moreover, CI tools also make

the deployment process smooth to

accelerate the production of secure

code. With CI tools, security is an

embedded continuous part of the

development process that reduces

the chances of vulnerabilities being

introduced at the later stages of the

lifecycle [26].

6.5. Example Tools and Platforms

Several tools and platforms

are available to support the

implementation of Shift Left

Security, with capabilities that span

continuous security testing and

validation. For instance, in real-time,

widely used SAST tools such as

SonarQube can detect security

vulnerabilities, bugs, and code

quality issues. It doesn’t struggle to

fit in CI/CD pipelines and can

provide continuous analysis as the

code is written. One more popular

SAST tool is Checkmarks, which

automates security tests and offers

extensive insights into security flaws

in codebase. Also, GitLab has

security integrated into it, provides a

comprehensive system to manage

the entire development lifecycle, and

has automated security testing

features as part of its CI/CD

capabilities. Alongside Jenkins and

GitHub Actions, these tools make it

simpler for organizations to

integrate security into the SDLC with

a mix of ease, allowing ongoing

security validation in the

development cycle. If businesses

employ those tools, they can remain

on top of security engagement and

detect vulnerabilities early in

development.

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 219-245

233

7. REAL-WORLD SUCCESSFUL

CASE STUDY OF SHIFT LEFT

SECURITY

Table 3. Real-World Benefits of Shift Left Security at GitLab

Key Metric
Pre-Shift Left

Security

Post-Shift Left

Security

Percentage

Improvement

Security-Related Defects High Reduced 40% decrease

Emergency Patches & Hotfixes Frequent Reduced 30% decrease

Time to Release Slow Faster Accelerated (X%)

Security Confidence Low High Increased

7.1. Case Study Overview: Company

GitLab's J Journey with Shift Left

Security

As the provider of the

DevOps platform, GitLab had to deal

with serious security issues in its

software offerings' scaling. Given an

ever-growing number of security

breaches where vulnerabilities were

disclosed in GitLab's products, it was

time to rethink security. Security was

traditionally considered a reactive

process rather than a part of the

development cycle, being addressed

only at the end of the development

lifecycle and leading to the lateness

of vulnerability detection and the

corresponding costly post-release

fixes. These issues made the

company shift security as a part of its

broader approach to better its

software security across the board

and its product portfolio. The idea

was to build security into the

development lifecycle in the early

stages of development, design, and

coding, not only in wrap-up patches

and final stages of testing. To

mitigate security risks proactively

while vulnerabilities have yet to

affect customers, GitLab decided to

move left by raising the bar for

security. This was key to increasing

the security posture of the products

themselves, reducing risk, and

improving their overall software

quality before deployments [27].

7.2. Challenges Faced Before

Implementing Shift Left Security

If unfamiliar with GitLab,

here is how they faced some

challenges that showed the need for

a Shift Left Security before

implementing it. Lack of discovery of

security vulnerabilities as late as

final testing or after deployment was

one of the significant problems. As a

result, costly and time-consuming

remediation efforts, such as

emergency patches, hotfixes, and, in

some cases, rollbacks of product

updates, were needed to get the

product back to a stable state. This

also proved reactive, and with a

large backlog of unresolved

vulnerabilities, the product delivery

process slowed, and customer

satisfaction suffered. In addition,

security breaches had started to of

the company's reputation, and

customers had begun complaining

about the safety of their data. This

repetition of challenges indicated

that security must stop being an

afterthought and be built throughout

the development lifecycle to create

secure software products. However,

the company realized that a

proactive and more integrated

approach toward security was

needed to stay in stride with fast

development cycles [28].

7.3. How the Shift Left Approach Was

Introduced and Integrated

GitLab's gradual shift to

Shift Left Security started by

embedding Static Application

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 219-245

234

Security Testing (SAST) and

Dynamic Application Security

Testing (DAST) tools in the

Continuous Integration and

Continuous Deployment (CI/CD)

pipeline. With its help, codebase

could be scanned continuously as it

grew, detecting vulnerabilities in

real time. Adopting the approach of

embedding security tools

intrinsically within the development

process meant that security was no

longer a solitary task when there

were deployment teams, DevOps,

and product managers to interact

with. It became a part of the job of

everyone working on the issue: it

was the priority, and security had to

be an integral part of it; otherwise,

there would be no passing of the

application into production.

Developers were trained in secure

coding practices and turned to be

responsible for writing secure code

from the outset of the project. In

addition, security professionals

collaborated with developers to

resolve security issues early in the

design, coding, and process during

testing. With the collaboration of

developers, security teams, and

operations, this approach helped

shift the company's security

practices into a culture where

security was part of every step in the

process of SDLC. Adding security

into the development lifecycle

enabled GitLab to find and fix

vulnerabilities earlier, streamlining

remediation time and releasing

faster and more securely.

7.4. The Results: Achievements and

Outcomes

Shift Left Security was

adopted because it resulted in

massive improvements to Gitlab's

security posture [29]. A good

outcome was a 40% reduction in

security-related defects and fewer

emergency patches and hotfixes

post-release. By identifying and

addressing security issues early on in

the SDLC, GitLab was able to

increase its speed of release and have

more confidence in its product

launches. The company could

concentrate more on innovation and

meeting the demands of their clients

since the time taken up by post-

deployment remediation

experienced a 30% decrease.

Security, therefore, was deeply

embedded within the development

process, and risks were continuously

improved and proactively managed.

Instead, real-time security testing

tool integrations were used to input

the CI/CD pipeline, providing

immediate feedback for GitLab to

react quickly to avoid delays. Thus,

GitLab was able to develop more

secure software in time and satisfy

customers. In addition, the

successful integration of security

into the development process also

improved communication between

teams, thus ensuring security

concerns have been consistently

addressed across the organization.

7.5. Key Takeaways for Other

Organizations

From GitLab's perspective,

Shift Left Security offers their

experience that others can learn from

if they want to implement this

approach. The main point is that

security needs to be integrated

earlier in the SDLC, and security

items should be moved to the code

design and development parts of the

cycle and not left as an afterthought

at the end of the cycle. Security

embedded throughout development

will eliminate vulnerabilities and

solve risks in advance. Moreover,

cultivating a culture of security

among development teams is

imperative to make developers hold

it in place throughout the process.

Continuous security testing running

as part of a more streamlined CI/CD

system feeds real-time vulnerability

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 219-245

235

detection and helps teams catch up

on the necessary actions toward

security. In addition, development,

security, and operations parties must

work together to set up a unified

security framework and ensure that

everyone wins over the common

objective of producing secure

software. Improving the

organization's security posture by

reducing vulnerabilities and

delivering safe, high-quality

software will require organizations

practicing Shift Left security to take

to heart these practices.

8. COMMON CHALLENGES IN

IMPLEMENTING SHIFT LEFT

SECURITY

Table 4. Common Challenges in Implementing Shift Left Security

Challenge Description

Resistance to Change
Legacy systems and developers’ resistance to adopting new

workflows.

Balancing Speed with Security Concern that embedding security may slow down development cycles.

Skill Gaps and Expertise
Lack of trained developers and security professionals familiar with

Shift Left Security tools and practices.

Tool Overload Managing and integrating multiple security tools can become complex.

Ensuring Continuous Integration

Without Compromising Security

Ensuring security is integrated without slowing down development

cycles.

8.1. Resistance to Change and Legacy

Systems

A significant challenge

organizations face when pursuing

Shift Left Security is change

resistance, especially when dealing

with legacy systems not created with

security in mind [30]. A legacy

system implies a complex web of old

code, architectures, and technologies

that often cannot support modern

security policies. Upgrading or

changing these systems to align with

Shift Left principles can be expensive

and time-consuming, requiring large

amounts of resources, tools, and

expertise. In addition, many

developers are used to classical

development methods. They are not

inclined to use new workflows or

tools for security, especially if they

understand new techniques or tools

will add complexity and slow the

development process. However, to

overcome this resistance, strong

leadership and a clear vision

regarding how Shift Left Security can

help the organization in the long run.

To encourage organizations to adopt

proactive security, they must explain

the benefits to their customers to

help them see that it can reduce their

risks, increase their product quality,

and save time and money by

identifying and resolving the

vulnerabilities earlier in their SDLC.

When it comes to Shift Left Security,

there are many more stakeholders to

engage, from leadership to

developers, and showing the

tangible benefit of Shift Left Security

will help foster their buy-in and

make it easier to adopt Shift Left

Security [31].

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 219-245

236

Figure 9. Challenges of Legacy Systems and How to Address Them

8.2. Balancing Speed with Security

In today’s high-speed

development environment, speed in

releasing the product entails the

engagement of security at the risk of

the latter not being prioritized.

Sometimes, Shift Left Security can

even slow developers’ progress,

mainly when used in the CI/CD

process. If development teams are

unfamiliar with the new tools or

additional workload, they may even

be concerned that implementing

security testing into the pipeline

would result in delays. This said, if

security testing is done right, it

should speed development up and

not slow down, thanks to catching

issues early before they require

expensive rework. They help to

ensure that any vulnerabilities are

caught and addressed in real-time

without significant delays using

automated security tests that can be

integrated into the CI/CD pipeline.

They need to strive for the

automation of all they can so that it

almost becomes part of what the

organization does naturally. It,

therefore, makes sense for

organizations to strike a balance

between security and speed by

embedding security as part of their

development process rather than

treating it as a separate, final-stage

task. Doing this will allow them to

release software and features faster

without compromising quality and

safety.

8.3. Overcoming Skill Gaps and Lack of

Expertise

To implement Shift Left

Security, one must be skilled in

secure coding practices, security

testing tools, and the latest threat

trends [32]. Up-skilling organization

developers and security teams is

complex for many organizations,

and it is difficult to address these

gaps. Developers may not be well

aware of the latest security

vulnerabilities and knowledgeable

about the best secure coding

practices, nor know how to utilize

security testing tools properly.

Security teams may also have to be

trained in the new development

practices, such as Agile and DevOps,

to work in concert with the

development teams. Continuous

training and education are key to

ensuring the teams have the security

know-how to shift left security

successfully. Therefore,

organizations must invest in making

their team resources, such as

workshops, certifications, and

internal training sessions, available

to keep their teams updated on the

newest security threats and best

practices. Continuous learning and

improvement must be built as a

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 219-245

237

culture to match the evolving threats

and maintain security as a top

priority in the development process.

8.4. Managing Tool Overload and

Complexity

Shift Left Security is another

challenge that organizations face

when they implement it. They have

many security tools to manage and

use, but each has its purpose. Having

the appropriate tools is essential for

secure testing. However, enterprises

often have problems integrating and

managing multiple tools properly.

Two primary issues may arise after

this— tool overload and overreliance

on external tools. Too many tools can

cause confusion, inefficiencies, and

missing vulnerabilities, or the teams

may not be using the right tool at the

right time or correctly interpreting

the results. To address this problem,

organizations must identify the most

powerful tool to aid their needs and

integrate them into a streamlined

and consistent workflow. The

selection of such tools should

complement each other and be

compatible with the existing

development environments to make

the security testing process as

effective and smooth as possible.

Reducing tool overload and making

security testing more manageable

can be helped by consolidating tools

and using platforms that supply

integrated security testing across the

SDLC.

8.5. Ensuring Continuous Integration

without Compromising Security

One of the key challenges of

implementing Shift Left Security is

ensuring that security can always be

integrated into the development

workflow without slowing the

development cycle. Ultimately,

security testing can be an added

burden in fast-paced development

environments, where the security

tests or findings require manual

intervention. The answer is,

however, to use automation to

enable continuous security

validation without manual

intervention. Organizations can

automate security checks to run

every time new code is integrated by

incorporating security testing into

the CI/CD pipeline, which would

allow them to detect the

vulnerabilities as early as possible

and promptly fix them. Also,

automation helps monitor security

risks continuously so that they are

not compromised at the cost of speed

during development. Additionally,

tools such as continuous integration

that help automatically run security

tests and identify security

vulnerabilities will add less burden

on the domains, equating the need

for manual security audits and

allowing developers to concentrate

on their job of coding with security in

mind throughout the entire

development lifecycle. Security must

be seamlessly integrated into the

CI/CD pipeline so that security can

be ensured in all stages of

development without slowing down

the pace of innovation [33].

9. BEST PRACTICES FOR SHIFT

LEFT SECURITY

Table 5. Best Practices for Shift Left Security

Best Practice Description

Prioritize Security Threat

Modeling Early

Identify potential security threats during the design phase to mitigate risks

upfront.

Automate Security Testing
Integrate automated security tools in the CI/CD pipeline for continuous

security testing.

Enable Secure Coding

Standards

Ensure all developers adhere to secure coding practices to minimize

vulnerabilities.

Regularly Update and Patch

Dependencies

Continuously monitor and update third-party libraries and components to

prevent vulnerabilities.

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 219-245

238

Best Practice Description

Collaboration Between Teams
Ensure security is a shared responsibility among developers, security, and

operations teams.

9.1 Prioritize Security Threat Modeling

Early

Threat modeling is one of the

first things that should be

accomplished in the development

process. Early detection of potential

security risks helps teams design

mitigation strategies to meet potential

vulnerabilities without introducing

the vulnerability into codebase. It

determines the system's architecture,

deducts possible attack vectors, and

learns how elements and their paths

relate. This approach allows for

anticipating security challenges and

designing systems to prevent them.

Early threat modeling can prevent

many serious security flaws from

contaminating the development team

later in the cycle. It additionally

allows for allocating resources to deal

with those areas of the system having

the most significant risk to address,

ensuring that security efforts are

made in the places where they are

most required. Regularly returning to

the threat model during development

also reveals new risks as the system

changes, strengthening security

awareness and performing ongoing

proactive risk management [34].

9.2. Automate Security Testing at Every

Stage

Shift Left Security is a best

practice that automates security

testing throughout the SDLC.

Security testing is, therefore,

automatically run at every stage of

development when tools, Static

Application Security Testing (SAST),

Dynamic Application Security

Testing (DAST), and Software

Composition Analysis (SCA) are

integrated into the CI/CD pipeline.

With automation, vulnerabilities are

found early in the process, thus less

likely to slip through the cracks.

Furthermore, automated testing

provides consistency and the ability

to conduct a thorough security check

without the threat of human

mistakes. Developers can have honest

feedback about security issues and be

able to fix them immediately since it's

automated, so there is less time for

post-release fixes. Between an

interactive pen test and a complete

application scan, making testing and

scanning part of development

momentum can guarantee that

security is continuously validated

through the software lifecycle.

9.3. Enable Secure Coding Standards and

Practices

Developers should follow

secure coding standards from the

beginning of the development.

Standards include secure code

guidelines to prevent the most

common vulnerabilities like SQL

injection, cross-site scripting (XSS),

and buffer overflow. Cadence and

culture of secure coding practices

must be adopted at all team levels,

and developers should be trained and

aware of these. Aside from

preventing vulnerabilities, practicing

security coding guarantees that

security is factored in throughout the

development cycle, from the design's

beginning to finishing deployment.

The secure coding practices should

also be reviewed and updated

continually, using the most recent

threat intelligence and industry best

practices [35]. Implementing secure

coding standards into the core

development process improves

software earlier in the SDLC and

makes it more secure.

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 219-245

239

Figure 10. Secure Coding

9.4. Regularly Update and Patch

Dependencies

Maintaining third-party

libraries and dependencies up to

date is of top importance when

securing software [36]. In many

modern applications, external code,

such as open-source libraries, is used

to speed up development. But, if not

kept updated or patched regularly,

these components can be quite a

security risk. If left unaddressed, the

vulnerabilities in third-party

dependencies can become entry

points for the attacker to

compromise the complete

application. Therefore, organizations

should have a process for frequently

checking for updates of these

dependencies and using tools such

as Software Composition Analysis

(SCA) to track the known

vulnerabilities in third-party code.

Keeping dependencies up to date

also allows organizations to prevent

introducing security flaws in the

application without knowing.

Keeping dependencies patched will

significantly reduce the risk of

exploitation, but failing to patch

them will undoubtedly result in

vulnerability at some point.

9.5. Collaboration is Key: Developers,

Security, and Operations

Implementing Shift Left

Security is effective only when there

is a collaboration between

development, security, and

operations teams. Traditionally,

development models saw security

slack away from the development

process itself and separate security

teams' work from those of

developers and operations staff. This

being said, Shift Left Security

highlights the importance of security

as a team's responsibility, not as a

specific team within the SDLC.

Because of this collaboration,

embedded security is propagated

throughout the entire development,

from design to deployment.

Developers must collaborate with

security experts to discover potential

risks and develop a secure coding

practice. At the same time, the

operation teams need to make sure

that security policies are adhered to

while pushing the code and while

utilizing it. Organizations can build a

culture of security in which everyone

is rowing toward building secure

software by encouraging open

communication and teamwork.

9.6. Incorporating Secure Configuration

Management

Another essential practice of

Shift Left Security is secure

configuration management. It

considers ensuring that all systems,

applications, and infrastructure are

securely configured from the get-go.

A common cause of security

vulnerabilities is misconfigurations

of the software or the infrastructure

underneath. There should be secure

configuration management practices

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 219-245

240

to ensure that security policies are

also practiced in all environments.

This involves securely setting up

servers, databases, network devices,

and all other cloud services, as well

as those of any third-party software

used to meet security standards.

Security settings should be regularly

checked to keep configurations up to

date and identify potential

misconfigurations early.

Incorporating secure configuration

management practices will help

reduce the risk of vulnerabilities

introduced by the misconfiguration

of systems, thereby enhancing the

overall security posture of

applications and infrastructure.

10. FUTURE CONSIDERATIONS

FOR SHIFT LEFT SECURITY
10.1. The Role of Artificial Intelligence in

Enhancing Shift Left Security

Artificial intelligence (AI)

will play a transformational factor in

making Shift Left Security happen

[37]. With the assistance of AI-

powered tools, as compared to

human testers, the tools can easily

understand the extensive code base

faster and better and discover

vulnerabilities quickly. These tools

use machine learning algorithms to

identify better patterns in the code

that could hint at potential security

problems [38]. Furthermore, AI can

also be employed to forecast future

possible security risks based on

historical data combined with real-

time analysis, all of which could help

development teams to fix at the

break of dawn when risks have not

yet escalated into critical ones. For

instance, AI might examine codebase

and immediately identify areas with

frequently pre-sent vulnerabilities,

like SQL injection, cross-site

scripting (XSS), or insecure API

utilization. Furthermore, AI can

work through new threats quickly,

making it easier to keep up with an

ever-evolving cybersecurity party

line. Introducing AI into the Shift

Left process makes security testing

proactive and efficient since

potential vulnerabilities are found

and mitigated early in development.

Thus, in the long run, AI can

transform Shift Left Security into an

autonomous, intelligent system that

evolves by itself, becomes capable of

learning from previous attempts,

and continuously becomes better at

identifying security bugs without

omitting any.

Figure 11. Power of Machine Learning and AI for every business
10.2. Cloud-Native Applications and

Security Challenges

The new complexities and

challenges of cloud-native

applications must be addressed

using Shift Left Security practices

[39]. Cloud-native architectures,

which mainly contain micro services,

serverless, container environments,

and so on, are the new software

development and deployment

formats. However, these changes

bring about distinct security issues

like the requirement for secure

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 219-245

241

communication among micro

services, control of access across

diverse cloud surroundings, and the

holes that arise due to the dynamic

scaling of resources. APIs and

external services play a vital role in

cloud-native applications, and any

insecure APIs can also introduce

additional attack vectors.

Furthermore, misconfigurations in a

cloud environment can leak sensitive

data or provide access to

unauthorized users, one of the most

remarkable security concerns.

Moving Security left needs to be

considered for the unique cloud-

native app risk. This necessitates

robust identity and access

management (IAM), secure API

development, and automated

security tools that integrate with the

cloud environments seamlessly. To

minimize risk, Security should be

baked into the early development

lifecycle of cloud-native applications

using micro services, containers, and

cloud infrastructure. Security is core

to the development process, not

something done at the very end.

With ongoing cloud technology

advancements, Shift Left Security

must be able to balance the required

security code coverage changes to

address the new challenges while

ensuring continuous security

validation from the application

lifecycle throughout its lifecycle in

the cloud.

10.3. The Integration of Threat

Intelligence in Development

Processes

Threat Intelligence

incorporated within the

development process is a necessary

hurdle to hurdle through to develop

ahead of ongoing security threats.

Known vulnerabilities, attack

vectors, and trends in the

cybersecurity landscape at various

sourcing points, as well as the best

practices to keep in mind, are all

valuable software that real-time

threat intelligence provides and

helps proactively address potential

risks. Integrating threat intelligence

into the Shift Left Security

framework enables the ability to

make educated decisions on the

Security of applications while being

aware of the current threat actors

and tactics involved. Development

teams can use this information to

customize their security measures to

deal with the threats they are most

likely to face. For instance, to keep

threat intelligence feeds from

feeding so many agencies, the

information can also help developers

know of a new malware strain, a new

zero-day vulnerability, or even a

new attack method so they can

change their security protocols,

patch for the bugs, and include

protection of that vulnerability [40].

Moreover, real-time threat

intelligence could also assist in

utilizing automated security testing

tools more efficiently to uncover the

latest or new threats. Not only does

this promote Security explicitly, but

it likewise means organizations can

resort to Security in light of the most

current accessible information, so

vulnerabilities can be tended to

before executioners can benefit them.

Threat intelligence is a dynamic

resource for improving a software

application’s security posture

because the development process

must be guided by the most current

security trends and risks [41].

10.4. Security as Code: Moving Towards a

Unified Security Framework

Security as Code is a

relatively new concept of defining

security policies as Code and

automatically enforcing it across all

the stages of the software

development lifecycle. This is to

guard the application from security

vulnerabilities at the source code and

early stage. Treat security

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 219-245

242

configurations, policies, and controls

as Code allows to provide the same

security rules to all environments

and automate the enforcement of

security rules. This also makes

scaling easier since security policies

can be versioned and applied to all

software deployments as they

evolve. For example, security rules

can be coded inside the Code to be

always validated during the build,

deployment, and test cycle. Thus, it

integrates security policies into the

development pipeline and thereby

ensures that security is always

maintained. Still, at, the same time, it

enables an agile and flexible

response to changes in security

needs. The organizations can move

towards a unified security

framework, i.e., Towards the

security as part of Code where

security is treated as part of the Code

and integrated seamlessly with the

Continuous Integration /

Continuous Deployment (or simply

CI/CD) pipelines to make security as

an intrinsic part of the software

development life cycle instead of an

isolated practice. Security as Code

concept also promotes collaboration

among development, reliability, and

operation teams by ensuring that

both are on the same page of how

security should be applied and that

security should be maintained

throughout the software lifecycle.

10.5. How Regulations and Compliance

Will Shape Future Practices

With the rapid changes in

data privacy and cybersecurity

regulations, Shift Left Security will

also have to conform to the new legal

requirements and industry

standards [42]. Their software must

comply with rules such as the

General Data Protection Regulation

(GDPR) or the California Consumer

Privacy Act (CCPA) and other

regional or industry-specific

regulations. Typically, these

regulations lay down strict

requirements for how personal data

should be handled, stored, and

transmitted. Companies have to

integrate such requirements into

their development processes to

avoid penalties and loss of

reputation. Given this, Shift Left

Security will require compliance

with regulatory checks to take place

as early as possible in the SDLC,

which may encompass ensuring that

security measures and data privacy

protocols are considered from design

early. Organizations can guarantee

that their software continues to

comply with ever-evolving

regulations by automating

compliance checks and continuously

checking those through the

development cycle. For example,

security tools that are part of the

CI/CD pipeline can do vulnerability

checks for data encryption, access

control, and data storage and

identify errors early so the software

doesn’t get released and reach

production. Taking a proactive

stance toward compliance will aid

organizations in avoiding huge fines

and legal risks and building

customer trust, proving that the

organization is dedicated to

protecting the user’s data and

conforms to the industry’s best

security standards.

11. CONCLUSION

Shift Left Security is a principle to

adopt security practices earlier in the Software

Development Lifecycle (SDLC). Addressing

security risks in the design and development

phases leads to far fewer vulnerabilities,

better security posture, and lower costs for

post-release remediation efforts. This

proactive strategy is suitable for continuous

security testing, provides honest time

feedback, and is ideal for all teams involved,

from development to security to operations. It

helps ensure that security has to be considered

at every phase of SDLC and not as a one-last

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 219-245

243

check as in traditional software development.

Shifting security to the left helps

organizations identify and mitigate

vulnerabilities before they become problems,

reducing the chances of software products

being less secure and safer. Nowadays, it is no

longer a best practice but a necessity to adopt

Shift Left Security in today’s fast-paced digital

world in which development cycles are

becoming faster, and the complexity of the

systems on our hands is ever increasing, for

which the traditional security measures are no

longer capable of dealing with.

With the rapid advancement of the

software development field, security will

become increasingly important to integrate in

every phase of the SDLC. Software security

needs to be fully integrated into the software

development process. Shift Left Security is

building upon itself for more advanced

security methodologies with a way to adapt to

modern development environments. This also

includes using AI-driven security tools,

tackling the uniqueness of cloud-native

applications, and meeting the increasing

importance of data privacy and compliance.

It’s prudent to prioritize security early on

whilst developing software to build more

resilient and robust software capable of

standing strains from the fast-changing and

constantly spreading cyber threat landscape.

It also helps bring applications to market

faster and with increased customer

satisfaction by ensuring that security does not

slow down the pace of development or reduce

product quality.

Adopting Shift Left Security as an

integral part of the software development

process for organizations is encouraged.

Placing security practices, starting from the

beginning of the development cycle,

organizations can build a better security

stance without much investment after release

and create a security culture among their

teams. By acting early, the vulnerabilities are

found and taken care of before they become

significant security weaknesses or result in

financial loss. In addition, Shift Left Security

promotes closer interaction between

developer, security, and operations teams,

leading to more secure application

development practices and earning additional

customers’ confidence. With the rise of cyber

threats, businesses that begin by emphasizing

security will be best able to manage these

issues and achieve sustained success in their

software products. In the era of digital data,

proactive security practices like Shift Left

Security are required to ensure that the

software application is secure when

development begins. Every phase of the SDLC

needs to be secured as organizations face ever

more sophisticated threats of cyber-attacks.

Shift Left Security offers a wide range of

proactive means for early risk identification

and mitigation in favor of more secure

applications and a more amicable

development process. Organizations that put

security first from the beginning can keep

their products and users safe, build a security-

first culture, and create successful software in

a fast and growing environment where they

are vulnerable.

REFERENCES

[1] A. Ahmad, I., Namal, S., Ylianttila, M., & Gurtov, “Security in software defined networks: A survey. IEEE

Communications Surveys & Tutorials,” 17(4), 2317–2346, 2015.

[2] D. A. Arrey, “Exploring the integration of security into software development life cycle (SDLC) methodology

(Doctoral dissertation, Colorado Technical University),” 2019.

[3] N. Dissanayake, M. Zahedi, A. Jayatilaka, and M. A. Babar, “A grounded theory of the role of coordination in software

security patch management,” in Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering, 2021, pp. 793–805.

[4] M. Deschene, “Embracing security in all phases of the software development life cycle: A Delphi study. Capella

University,” 2016.

[5] R. K. Raju, “Dynamic memory inference network for natural language inference. International Journal of Science and

Research (IJSR),” 6(2), 2017.

[6] M. Jawed, “Continuous security in DevOps environment: Integrating automated security checks at each stage of

continuous deployment pipeline (Doctoral dissertation, Wien),” 2019.

[7] T. Xu, M., Song, C., Ji, Y., Shih, M. W., Lu, K., Zheng, C., ... & Kim, “Toward engineering a secure android ecosystem:

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 219-245

244

A survey of existing techniques. ACM Computing Surveys (CSUR),” 49(2), 1–47, 2016.

[8] A. Chavan, “Eventual consistency vs. strong consistency: Making the right choice in microservices. International

Journal of Software and Applications,” 14(3), 45–56, 2021.

[9] B. Ransome, J., & Schoenfield, “Building in Security at Agile Speed. Auerbach Publications,” 2021.

[10] A. CHAVAN, “Exploring event-driven architecture in microservices: Patterns, pitfalls, and best practices.

International Journal of Software and Research Analysis,” 2021.

[11] V. Boppana, “Secure Practices in Software Development. Global Research Review in Business and Economics

[GRRBE],” 10(05), 2019.

[12] F. Alaba, F. A., Othman, M., Hashem, I. A. T., & Alotaibi, “Internet of Things security: A survey. Journal of Network

and Computer Applications,” 88, 10–28, 2017.

[13] N. Hassija, V., Chamola, V., Gupta, V., Jain, S., & Guizani, “A survey on supply chain security: Application areas,

security threats, and solution architectures. IEEE Internet of Things Journal,” 8(8), 6222–6246, 2020.

[14] M. A. Bell, S. C., & Orzen, “Lean IT: Enabling and sustaining your lean transformation. CRC Press,” 2016.

[15] R. Ross, R., Pillitteri, V., Graubart, R., Bodeau, D., & McQuaid, “Developing cyber resilient systems: a systems

security engineering approach (No. NIST Special Publication (SP) 800-160 Vol. 2 (Draft)). National Institute of

Standards and Technology,” 2019.

[16] R. Pompon, “IT Security Risk Control Management: An Audit Preparation Plan. Apress,” 2016.

[17] C. Deegan, “Continuous Security; Investigation of the DevOps Approach to Security (Doctoral dissertation, Dublin,

National College of Ireland),” 2020.

[18] D. Landoll, “The security risk assessment handbook: A complete guide for performing security risk assessments.

CRC press,” 2021.

[19] L. L. Kegan, R., & Lahey, “An everyone culture: Becoming a deliberately developmental organization. Harvard

Business Review Press,” 2016.

[20] S. Nyati, “Revolutionizing LTL carrier operations: A comprehensive analysis of an algorithm-driven pickup and

delivery dispatching solution. International Journal of Science and Research (IJSR), 7(2), 1659-1666. Retrieved from,”

2018.

[21] P. Sandhu, M. A., Shamsuzzoha, A., & Helo, “Does outsourcing always work? A critical evaluation for project

business success. Benchmarking: An International Journal,” 25(7), 2198–2215, 2018.

[22] M. I. Mateo Tudela, F., Bermejo Higuera, J. R., Bermejo Higuera, J., Sicilia Montalvo, J. A., & Argyros, “On combining

static, dynamic and interactive analysis security testing tools to improve owasp top ten security vulnerability

detection in web applications. Applied Sciences,” 10(24), 9119, 2020.

[23] S. Graham Linck, E. J., Richmond, P. A., Tarailo-Graovac, M., Engelke, U., Kluijtmans, L. A., Coene, K. L., ... &

Mostafavi, “metPropagate: network-guided propagation of metabolomic information for prioritization of metabolic

disease genes. NPJ genomic medicine,” 5(1), 25, 2020.

[24] P. Singh, V., Murarka, Y., Jaiswal, A., & Kanani, “Detection and classification of arrhythmia. International Journal of

Grid and Distributed Computing,” 13(6), 2020.

[25] A. V Ali, M., Khan, S. U., & Vasilakos, “Security in cloud computing: Opportunities and challenges. Information

sciences,” 305, 357–383, 2015.

[26] R. Aljawarneh, S. A., Alawneh, A., & Jaradat, “Cloud security engineering: Early stages of SDLC. Future Generation

Computer Systems,” 74, 385–392, 2017.

[27] L. Bass, L., Weber, I., & Zhu, “DevOps: A software architect’s perspective. Addison-Wesley Professional,” 2015.

[28] S. Assal, H., & Chiasson, “Security in the software development lifecycle. In Fourteenth symposium on usable

privacy and security (SOUPS 2018) (pp. 281-296),” 2018.

[29] A. Shajadi, “Automating security tests for web applications in continuous integration and deployment environment,”

2019.

[30] J. D. Bailey, J. R., & Raelin, “Organizations don’t resist change, people do: Modeling individual reactions to

organizational change through loss and terror management. Organization management journal,” 12(3), 125–138,

2015.

[31] S. Sharma, “The DevOps adoption playbook: a guide to adopting DevOps in a multi-speed IT enterprise. John Wiley

& Sons,” 2017.

[32] A. Takanen, A., Demott, J. D., Miller, C., & Kettunen, “Fuzzing for software security testing and quality assurance.

Artech House,” 2018.

[33] V. V. R. Boda, “Balancing Speed and Safety: CI/CD in the World of Healthcare. Journal of Innovative Technologies,”

3(1), 2020.

[34] F. E. Settembre-Blundo, D., González-Sánchez, R., Medina-Salgado, S., & García-Muiña, “Flexibility and resilience in

corporate decision making: a new sustainability-based risk management system in uncertain times. Global Journal

of Flexible Systems Management, 22(Suppl 2),” 107–132, 2021.

[35] A. Kumar, “The convergence of predictive analytics in driving business intelligence and enhancing DevOps

efficiency. International Journal of Computational Engineering and Management, 6(6), 118-142. Retrieved from,”

2019.

[36] M. Derr, E., Bugiel, S., Fahl, S., Acar, Y., & Backes, “Keep me updated: An empirical study of third-party library

updatability on android. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications

Security (pp. 2187-2200).”

[37] K. Shibuya, “Digital transformation of identity in the age of artificial intelligence,” Springer, 2020.

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 219-245

245

[38] S. NYATI, “Transforming telematics in fleet management: Innovations in asset tracking, efficiency, and

communication. International Journal of Science and Research (IJSR), 7(10), 1804-1810. Retrieved from,” 2018.

[39] P. Laszewski, T., Arora, K., Farr, E., & Zonooz, “Cloud Native Architectures: Design high-availability and cost-

effective applications for the cloud. Packt Publishing Ltd,” 2018.

[40] P. Singh, V., Oza, M., Vaghela, H., & Kanani, “Auto-encoding progressive generative adversarial networks for 3D

multi object scenes. In 2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT)

(pp. 481-485). IEEE.”

[41] J. F. Samtani, S., Chinn, R., Chen, H., & Nunamaker Jr, “Exploring emerging hacker assets and key hackers for

proactive cyber threat intelligence. Journal of Management Information Systems,” 34(4), 1023–1053, 2017.

[42] C. A. Tschider, “Regulating the internet of things: discrimination, privacy, and cybersecurity in the artificial

intelligence age. Denv. L. Rev., 96, 87,” 2018.

