
The Eastasouth Journal of Information System and Computer Science

Vol. 2, No. 03, April 2025, pp. 246-271

ISSN: 3025-566X, DOI: 10.58812/esiscs.v2i03

Journal homepage: https://esj.eastasouth-institute.com/index.php/esiscs

The Role of GitLab Runners in CI/CD Pipelines: Configuring EC2,

Docker, and Kubernetes Build Environments

Naga Murali Krishna Koneru
Hexaware Technologies Inc, USA

Article Info ABSTRACT

Article history:

Received Apr, 2025

Revised Apr, 2025

Accepted Apr, 2025

 This research studies GitLab Runners optimization in CI/CD pipelines

across the EC2, Docker, and Kubernetes environment configurations. It

shows that such key strategies for enhancing build performance and

resource utilization would reduce build time by 65 percent and

resource costs by 40 percent. Practical recommendations for

configuring runners to achieve optimal efficiency are presented in the

context of analyzing 200 enterprise pipelines. The key optimization

techniques are autoscaling based on real-time metrics, advanced

caching to minimize the rebuilds, and tuning the resource allocation to

avoid over-provision. The study further looks into the capability of

machine learning models to optimize the number of runners

dynamically, predict the hit or not on the cache, and automatically pick

up the execution environment. When these innovations are applied, CI

/ CD pipeline performance will improve by reducing idle resources,

building time, and optimizing resource utilization. The paper shows

that experts can achieve very good availability and cost efficiency by

adapting the configuration of GitLab Runners. The research also

discusses the evolution of automated environment selection and

machine learning-based performance tuning. This framework serves as

the base for organizations to increase their CI/CD pipeline

development rate and facilitates a faster, more reliable, and cheaper

software delivery.

Keywords:

Build optimization;

CI/CD pipelines;

Docker;

EC2;

GitLab Runners;

Kubernetes;

Pipeline automation

This is an open access article under the CC BY-SA license.

Corresponding Author:

Name: Naga Murali Krishna Koneru

Institution: Hexaware Technologies Inc, USA

Email: nagamuralikoneru@gmail.com

1. INTRODUCTION

Continuous Integration and

Continuous Deployment (CI/CD) pipelines

will not be complete without the help of

GitLab Runners, which automate the code

integration, testing, and deployment process.

The GitLab Runners are the execution engines

for the CI/CD workflows, meaning they do all

the work defined in these pipelines (such as

building the application and running the

tests) and finally deploying to the production

environments. Since these runners allow the

efficiency of CI/CD processes to be largely

dependent on them, their optimization has

become an important aspect of today's

software work. For instance, the research on

pipeline orchestration and the CI/CD tools'

management has grown. The optimization of

GitLab Runners is not addressed on various

execution environments, such as EC2, Docker,

and Kubernetes. In particular, this paper

addresses this gap, which provides a

framework to configure and optimize GitLab

https://esj.eastasouth-institute.com/index.php/esiscs
https://creativecommons.org/licenses/by-sa/4.0/
mailto:nagamuralikoneru@gmail.com

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 246-271

247

Runners over these execution environments

with a focus on improving build performance

and resource usage, as well as on overall

pipeline efficiency.

Software development now has the

principles of Continuous Integration (CI) and

Continuous Deployment (CD). Thus, CI is

concerned with the continuous integration of

changes in the code into a common repository

and automated testing of the software quality.

The CD further extends this by automating

the delivery of this change to production

environments. A CI/CD pipeline is the process

of automating the stages of code integration,

testing, and deployment. The aim is to

simplify the development processes, reduce

the need for manual changes, reduce the

development cycle time, and keep the

development pace in delivery the same.

Nowadays, this has become a must in

modern-day software engineering, even in the

team that manages and develops a large

complex system and maintains agility and

reliability.

The GitLab Runners are the agents to

which jobs run in the defined CI/CD pipeline.

They have to execute the process of code

building, testing, and deploying. It provides

flexibility and the scalability of the pipeline

execution ability; it allows running on

different platforms like VMs, Docker

Containers, or Kubernetes Cluster. The

GitLab Runners can be operated differently

depending on how they need their pipeline to

be. As the CI/CD process should have its

automation engines and, eventually, affects

the speed and efficiency of the software

development lifecycle, it is coherent to

optimize it. Optimizing the price of GitLab

Runners is important for optimizing pipeline

efficiency. Optimization of the runner

configuration also reduces the build times and

the usage of resources. In any cloud

environment, such as Amazon EC2, Docker

containers, or Kubernetes — any resources

you might have, any execution environment,

the optimization process is even more

important because the execution environment

and resources are variable. GitLab Runner

will churn the CPU into the best it can when

the resources are set up properly and cater to

it so much that idle times decrease and the

resource allocation cost is negligible or

unnecessary. This paper looks into how to get

the maximum out of GitLab Runners in these

environments and provides some practical

steps that you can take to achieve that.

Take this article as a detailed design

for dynamic genome scanning through EC2,

Docker, and Kubernetes under the language

of GitLab Runners. This research catalogs the

best practices and presents some real-world

configurations that will help improve build

performance and resource utilization. The

study structure is presented in different

sections. The first part covers CI/CD pipelines

and GitLab Runners, and the second deals

with how optimizing runners matters. The

study also describes how to get GitLab

Runners working on EC2, Docker, and

Kubernetes environments, performance

enhancements, and how good configuration

can impact everything. The results and

suggestions for future research on the runner

optimization problem are then summarized.

2. BACKGROUND AND

RELATED WORK

The CI/CD pipelines are crucial to

modern software development. These

pipelines are supposed to automate code

integration, testing, and deployment to make

the software faster and even more reliable. On

the performance of these pipelines, the GitLab

Runner, an automation agent that runs jobs

for the pipelines on their behalf rather than

run the jobs inside the same docker container

[1], becomes one of its biggest players. While

these runners run the code across platforms

such as EC2, Docker, and Kubernetes,

optimizing their configuration and

management is essential to achieve high

efficiency and minimize resource

consumption. Despite the importance of

GitLab Runners, there has been limited

research in the literature looking at a

comprehensive optimization strategy for

runners across different platforms. In

contrast, existing literature has primarily

focused on isolated aspects of these execution

environments. This shows the relevant studies

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 246-271

248

on CI/CD execution environments and studies

that close the research gaps related to GitLab

Runner optimization.

2.1 Development Overview of CI/CD

Execution Environments

Many other various CI/CD

execution environments, such as

Amazon EC2, Docker, and

Kubernetes, have already been

covered in previous studies. There are

advantages to hosting Runners in

each of the environments. EC2

instances provide scalable and

dedicated computing resources for

handling fluctuating workloads. It

emphasizes the flexibility of the

cloud-based environments by

allowing the dynamic provisioning of

EC2 instances to satisfy pipeline

demand. In addition, Docker is

famous for its lightweight

containerization and efficiency in

providing an isolated execution

environment. Virtual machines are

slower to provision and burden their

host with a hefty overhead than

Docker containers, making them less

popular for use in CI/CD pipelines

[2]. On the other hand, Kubernetes is

touted as an orthogonal solution for

GitLab Runner infrastructure

management with high availability

and proper resource distribution in

case of blooming GitLab Runner

deployment.

Figure 1. Overview of CI/CD Pipeline

Although these studies hint at

the specific GitLab Runners

environment, they ignore the

optimization of GitLab Runners in a

mixed or multi-environment setup.

Integrating EC2, Docker, and

Kubernetes in a single CI/CD pipeline

is still unexplored. For these various

environments, the optimization of

runners is critical; each platform has

different performance, cost, and

resource utilization challenges.

2.2 The Need for Optimizing GitLab

Runners

In order to achieve higher

CI/CD pipeline efficiency, optimizing

GitLab Runners is necessary.

Building processes are directly run

and affected by the runners' speed,

the tests' success rate, and the time to

deploy code into production. In a

cloud, where resources are on a

demand basis, GitLab Runners must

be configured to align with this

demand and minimize resource

wastage [3]. If CI/CD pipelines are not

properly optimized, they will take

longer build time and cost and will

have fewer useful resources.

Each environment has its

optimization challenges, and GitLab

Runners are distributed on different

platforms. For instance, in an EC2

environment, choosing instance types

or allocating resources such as CPU

and memory greatly impacts the

performance of the GitLab Runners.

With their lightweight containers,

Docker helps isolate jobs and reduces

overhead, but configuring Docker

containers for the most efficiency is

more about the features and some

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 246-271

249

things to consider, such as caching,

job concurrency, and container

images [4]. On the flip side,

Kubernetes provides automatic

scaling (though this needs to be tuned

in the case of a large-scale enterprise),

whereas, for example, Lambdas are

static resources and would need to be

managed by an application through

external procedures. To accomplish

this, researchers optimize the process

for better performance at a lower cost

by keeping GitLab Runners from

burning too many resources

necessary for modern software

development.

2.3 Research Gaps in GitLab Runner

Optimization

Although individual studies

have examined optimization for

GitLab Runners under specific

environments, there is still a gap in

such research as it relates to the

complete framework to do so across

multiple environments. Many studies

have focused on performance

improvements only within isolated

environments such as EC2, Docker, or

Kubernetes (Midigudla, 2019).

Research on optimizing the GitLab

Runners on multiple platforms in a

single CI/CD pipeline is not common.

Although there is extensive literature

related to optimizing the alignment of

the runners, most studies lack an

exploration of the practical aspects of

implementation and configuration

strategies that organizations can carry

out to foster tangible performance

gains.

This research addresses this

gap by synthesizing previous studies

and introducing new ways of

configuring and managing GitLab

Runner. It analyzes 200 enterprise

pipelines and examines the patterns

of runner utilization and performance

optimization. This helps it make

practical recommendations regarding

GitLab Runner configuration to run

with better build performance,

keeping costs lower and improving

the whole pipeline efficiency.

Figure 2. Exploring GitLab Runners

2.4 Contributions of This Research

Proposing a unified

framework for running and

managing GitLab Runners on EC2,

Docker, and Kubernetes is a

contribution and a problem this

research addresses. Based on 200

enterprise pipelines, it introduces

novel approaches to optimizing

runner performance and resource

utilization. The research motivates

careful selection of an execution

environment based on the dictated

pipeline characteristics like job

concurrency and workload demands.

The study suggests that for the EC2

environment, dynamic provision

instances using automation tools like

Terraform are needed to allow the

best possible allocation of resources.

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 246-271

250

In research in Docker environments,

special emphasis is put on efficient

caching and job configuration to

minimize build times and improve

container performance. The study

aims to use Helm for deployment

management, with resource requests

and pod autoscaling for the runner to

be scaled with proper scalability and

without unnecessary overhead.

This research also addresses

practical challenges such

organizations face in configuring the

GitLab Runners. The study analyzed

to what extent real-world enterprise

data can understand the CI/CD

pipeline performance and how

organizations can refine their

performance by implementing

necessary changes in their pipeline.

2.5 Performance Optimization and

Resource Utilization

GitLab Runners optimization

is about improving performance and

minimizing resource consumption.

As for optimization of a CI/CD

pipeline, generally, this means

reducing the build time and making

tests more successful in an automated

way. In this research, researchers

investigate the capability of GitLab

Runners configuration to greatly

reduce build time, enhance cache

efficiency, and reduce the job failures

stemming from runner issues. It also

points to the importance of

optimizing resources to minimize idle

runner time and maximize the total

utilization of resources. The study

analyzes enterprise pipeline data to

show that GitLab Runners can be

optimized to achieve a 65% reduction

in build time, a 40% increase in cache

hit rates, and a 70% decrease in idle

runner time. The low infrastructure

cost and short development cycles

directly result from these

improvements.

2.6 Future Directions in GitLab Runner

Optimization

While this research has some

important lessons on persona

optimization of the GitLab Runner, it

also exposes the way to go further.

The area of future research could be

developed using machine learning-

based approaches to the prediction of

optimal runner configurations using

historical data. Studying advanced

cache prediction algorithms that can

dynamically change the cache

configuration according to job

patterns is also possible. Another

promising area for future research is

automated environment selection

(also known as environment

selection) – where GitLab Runners

automatically pick an execution

platform to run their pipelines

depending on those pipeline

requirements. Based on previous

studies on GitLab Runners, this work

brings a new approach to finding an

efficient runner configuration for

multiple environments [5]. The study

provides real-world data and

practical recommendations that help

get CI/CD pipelines to perform well.

Figure 3. How to Configure GitLab Runner

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 246-271

251

3. RUNNER ARCHITECTURE

AND IMPLEMENTATION

To fully utilize the CI/CD pipeline

performance, the GitLab Runners need to be

configured on different execution

environments. In this case, the agents will be

GitLab Runners, which will be executed to

execute CI/CD pipelines. These runners are

optimized to reduce these times and/or

optimize the utilization of these resources and

improve the pipeline's total efficiency. Those

scholars then explain the architecture and

implementation of GitLab Runners in three

key environments: EC2, Docker, and

Kubernetes. Conversely, these

implementations aim to utilize the best

performance and resource management for

the CI/CD pipelines to function smoothly in

their work environments.

3.1 EC2 Runner Configuration

For organizations that are

processing-intensive workloads in

CI/CD, the use of AWS EC2 runners is

particularly useful since they need to

be dedicated computing resources.

EC2 instances-specific virtual

machines are scalable and

customizable and are therefore

preferred for use with many

concurrent jobs or resource-intensive

tasks. To allow us to use the EC2

runners, EC2 runners are also used

for automated provisioning [6], by

using Terraform so that we can

deploy the resources and manage

them pretty much on ignore (very

little manual intervention).

It is a Terraform module that

provisions the GitLab runner on EC2

instances. The gitlab_runner is loaded

using key parameters, environment

type (production), and instance size

(c5.2xlarge) because experts do not

want the runner to starve in

computing power. Due to the high-

performance capabilities of the

c5.2xlarge instance, having a

balanced CPU, memory, and network

performance score will be used for

multiple jobs running in parallel as a

CI/CD.

AWS EC2 runners provide

dedicated compute resources for

CI/CD workloads. This

implementation uses Terraform for

automated provisioning:

hcl
EC2 Runner Module

module "gitlab_runner" {

 source = "./modules/gitlab-runner"

 environment = "production"

 instance_type = "c5.2xlarge"

 runner_config = {

 concurrent = 10

 check_interval = 3

 session_server = {

 enabled = true

 timeout = 1800

 }

 }

 vpc_config = {

 vpc_id = module.vpc.vpc_id

 subnet_ids = module.vpc.private_subnet_ids

 security_group_ids =

[aws_security_group.runner.id]

 }

 tags = {

 Environment = "production"

 Purpose = "gitlab-runner"

 }

}

Runner Security Group

resource "aws_security_group" "runner" {

 name_prefix = "gitlab-runner-"

 vpc_id = module.vpc.vpc_id

 ingress {

 from_port = 22

 to_port = 22

 protocol = "tcp"

 cidr_blocks = ["10.0.0.0/16"]

 }

 egress {

 from_port = 0

 to_port = 0

 protocol = "-1"

 cidr_blocks = ["0.0.0.0/0"]

 }

}

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 246-271

252

This module configuration

defines the runner environment and

enough resources so that the runner

can run up to 10 concurrent jobs at a

time. The check_interval value, 3

seconds, specifies the period during

which the runner’s job checks to find

new jobs to perform. The session

server is made to timeout in 30

minutes, so long-running jobs end up

with the needed duration. When

deploying EC2 runners, networking

configurations play an important

role[7]. The value of the vpc_config

parameter ensures that the runner

runs in a secure network environment

within the Virtual Private Cloud

(VPC) and subnet IDs. With this

setup, the runner is only allowed to

access trusted internal resources, and

logically, the security_group_ids

restrict the runner in what it is

allowed to touch.

The Terraform configuration

also defines the runner’s security

group. In order to restrict access to the

runner to authorized users only, the

security group constrains inbound

SSH traffic to a certain range

(10.0.0/16) of IP addresses, and it

allows only from specific IP

addresses. The biggest benefit, and

one of the favourite aspects of the

service, is that outbound traffic is

allowed to any destination, which is

very handy for any such tasks that

involve communicating externally,

such as talking to GitLab repositories

or other internet resources. In other

respects, this security group opens

ports for SSH access to trusted

sources while continuing to provide

sufficient protection of the EC2

instance against external threats. This

configuration allows only the trusted

users in the particular network range

to establish an SSH connection to

avoid any security breach.

3.2 Docker Runner Implementation

Docker runners provide a

distinct build environment that will

run CI/CD jobs efficiently without

creating a full virtual machine

provision for each job. Organizations

using Docker containerized

workflows can achieve high resource

utilization and eliminate the

overhead of maintaining many

separate VMs per job. The Docker

runners are lightweight and can be

configured to use whatever container

images are needed specifically for

each task at hand [8]. In this case, the

Docker runners config is set up in the

config.toml resource. This

configuration file must specify many

parameters for the runner's execution

environment. In this case, the

configuration involves setting the

concurrent to 10 so that the runner

will run up to 10 jobs simultaneously.

Since the check_interval is set to 0, it

turns off job retries, which results in

an overall more efficient runner as it

avoids unnecessary job retries.

yaml

In this case, the jobs will run

inside Docker containers using the

docker executor. Due to its small size

and security features, Alpine:latest

config.toml

concurrent = 10

check_interval = 0

[[runners]]

 name = "docker-runner"

 url = "https://gitlab.example.com/"

 token = "PROJECT_SPECIFIC_TOKEN"

 executor = "docker"

 [runners.docker]

 tls_verify = true

 image = "alpine:latest"

 privileged = false

 disable_cache = false

 volumes = ["/cache"]

 shm_size = 0

 cache_dir = "/cache"

 pull_policy = "if-not-present"

 [runners.cache]

 Type = "s3"

 Shared = true

 [runners.cache.s3]

 ServerAddress = "s3.amazonaws.com"

 AccessKey = "ACCESS_KEY"

 SecretKey = "SECRET_KEY"

 BucketName = "runner-cache"

 BucketLocation = "us-east-1"

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 246-271

253

image has been selected for CI/CD. To

prevent the security risks of being

able to run the container in a

privileged mode where the container

was not given enough privileges, a

runner is configured to run in non-

privileged mode [9]. In volumes

configuration, experts ensure that

build-cache data is stored in the/cache

directory, allowing us to share build-

cache data between builds and speed

up floor builds. Amazon S3 is used to

store the cache, and it provides

reliability and scalability. In the case

of the S3 cache configuration, experts

provide the AccessKey, SecretKey,

the bucket name and its location. This

will enable the runner to store and

take cache data from the S3 bucket

quickly, and there is no need to

rebuild dependencies to speed up the

build time.

3.3 Kubernetes Runner Orchestration

GitLab Runners can be

deployed on a Kubernetes cluster to

take advantage of Kubernetes scaling

and resource management.

Organizations that have to scale their

CI/CD pipelines dynamically to

handle varying workloads find

Kubernetes runners of real interest. A

Kubernetes runner has implemented

themselves using Helm, a package

manager for Kubernetes, to simplify

the deployment and configuration. By

providing Helm, experts enable an

organization to manage the

Kubernetes resources in an organized

and repeated manner [10]. Specific

parameters regarding the GitLab URL

and registration token are specified in

the configuration for Kubernetes

runners, which are required to

connect to the GitLabinstance for the

runner to register itself to execute

jobs.

yaml

Many important features in the

Kubernetes runner configuration

support its secure and efficient

operation. The first is RBAC (Role-

Based Access Control), which allows

the runner to manage pods by giving

them access to the needed resources.

The runner will use the Ubuntu:20.04

image to run its job containers so that

they will have a stable, known, and

familiar environment to work in. The

runner runs under the principle of

least privilege, and the security

settings ensure that it operates under

that rule. In pod_security_context,

which is supposed to be less risky of a

breach, run_as_user=65533. In

addition, it configures the use of

empty_dir volumes for temporary

data storage and host_path volumes

for mounting Docker sockets, which

allows the runner to communicate

with the Docker daemon. The

Kubernetes runner implementation

scales well and allows the runner to

deal with high numbers of concurrent

jobs because Kubernetes controls the

number of pods used for the run out

of the box, and pods are provisioned

and retired automatically.

values.yaml

gitlabUrl: https://gitlab.example.com/

runnerRegistrationToken: "RUNNER_TOKEN"

rbac:

 create: true

 rules:

 - apiGroups: [""]

 resources: ["pods"]

 verbs: ["list", "get", "watch", "create", "delete"]

runners:

 config: |

 [[runners]]

 [runners.kubernetes]

 namespace = "{{.Release.Namespace}}"

 image = "ubuntu:20.04"

 privileged = false

 service_account = "gitlab-runner"

 service_account_overwrite_allowed = true

 pod_labels = ["gitlab-runner={{ .Release.Name }}"]

 helper_image = "gitlab/gitlab-runner-helper:x86_64-

latest"

 [runners.kubernetes.pod_security_context]

 fs_group = 65533

 run_as_non_root = true

 run_as_user = 65533

 [[runners.kubernetes.volumes.empty_dir]]

 name = "docker-certs"

 mount_path = "/certs/client"

 medium = "Memory"

 [[runners.kubernetes.volumes.host_path]]

 name = "docker-sock"

 mount_path = "/var/run/docker.sock"

 host_path = "/var/run/docker.sock"

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 246-271

254

By defining and implementing

the GitLab Runners configuration and

its deployment over EC2, Docker, and

Kubernetes environments, the

organizations have a set of handy

tools to utilize the CI/CD pipeline.

EC2 runners and build environments

provide dedicated computing

resources for resource-intensive tasks,

and docker runners provide that for

resource-intensive tasks [11]. Various

reasons point to Kubernetes runners

being the best option for

organizations with fluctuating

workloads. Organizations that can

properly configure and adjust these

runners will see pipeline performance

increase, spend less funds and time,

and generally make their CI/CD more

efficient. These implementations here

do exactly what we want with the

configuration for Runners using real-

life solutions to optimize them, and

one can tailor these configurations

according to business needs.

4. IMPLEMENTATION

STRATEGY

A CI/CD pipeline with GitLab

Runners deployed in different environments,

such as EC2, Docker, and Kubernetes, is the

key to optimizing build performance and

resource usage. This enables improving the

CI/CD pipeline performance, minimizing

resource costs, and increasing operational

efficiency.

4.1 Runner Autoscaling Implementation

When implementing auto-

scaling for the GitLab Runners,

developers use custom metrics to

dynamically allocate resources as the

demand for CI/CD pipelines comes

in. An added good is autoscaling,

which will also autoscale so that it

does not overspend but wherever it

needs to do so so that the entire

pipeline runs smoothly [12]. This

integrates monitoring systems into

collecting runtime metrics of the

current runner’s current utilization

and the pending workload.

Autoscaling is made possible

by the assumption that a

MetricsClient will collect

performance metrics from many

environments, including all the

possible environments like EC2,

Docker and Kubernetes. The scaling

decision for all environments is based

on these metrics. The metric threshold

plays a role in determining at what

point scaling actions are emitted. For

instance, if the current utilization

crosses a predetermined scaling

threshold (say, 75%), the autoscaler

starts the scaling operations to take

care of the extra load.

python

Its scaling approach also

ensures that it uses resources

accordingly, scaling up resources

only when needed and scaling down

resources when demand falls. The

class RunnerAutoscaler:

 def __init__(self, config):

 self.config = config

 self.metrics_client = MetricsClient()

 self.scaling_threshold = 0.75

 def calculate_scaling_requirements(self):

 """

 Determines scaling requirements based on runner

metrics.

 Returns scaling decisions for different environments.

 """

 metrics = self.metrics_client.get_runner_metrics()

 scaling_decisions = {

 'ec2': self._calculate_ec2_scaling(metrics),

 'docker': self._calculate_docker_scaling(metrics),

 'kubernetes': self._calculate_k8s_scaling(metrics)

 }

 return scaling_decisions

 def _calculate_k8s_scaling(self, metrics):

 """

 Calculates Kubernetes scaling requirements based on

 current utilization and pending jobs.

 """

 current_utilization =

metrics.get('kubernetes_utilization', 0)

 pending_jobs = metrics.get('pending_jobs', 0)

 if current_utilization > self.scaling_threshold:

 return {

 'action': 'scale_up',

 'replicas': self._calculate_required_replicas(

 current_utilization,

 pending_jobs

)

 }

 return {'action': 'maintain'}

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 246-271

255

autoscaling mechanism adjusts the

number of active runners by real-time

metrics so that idle resources are

avoided and unnecessary compute

power is not used. Such a method

leads to considerable cost savings and

high pipeline throughput. For

example, the autoscale can

dynamically change the number of

replicas in a Kubernetes environment

using CPU and memory utilization

metrics. In a similar manner, scaling is

done in Docker and EC2

environments [13]. where scaling is

decided based on the job queue

lengths and resource utilization

statistics. With this approach, any

imbalance in the dynamic allocation

of resources across all execution

environments is balanced.

4.2 Cache Optimization

The strategy of caching the

runner cache is inspired by the target

of configuring the runner cache on

different environments. By doing

that, we reduce build time and

improve the efficiency of our CI/CD

pipeline. The cache optimization is to

spend minimum redundant

operations to use fewer resources

during the buildup time, and the

reuse of previously built artifacts

minimizes the buildup time.

Each environment gets the

cache class in the form of

RunnerCacheManager, which deals

with the cache. Depending on the job

context and historical cache hit rates,

it decides if it should regenerate the

cache from the existing one. To

regenerate the cache, the cache hit

rate can be below a certain threshold

(50%) [14]. This also protects the

cache from being irrelevant and

badges the build performance by

serving useless or less efficient cache

data.

python

The cache optimization

process heavily relies on intelligent

cache management tools that work on

cache statistics. These tools help the

system decide whether to regenerate

the cache entry or use the current

configuration by making it possible to

determine whether a cache entry is

being accessed frequently. Using a

cache in an S3 bucket will help store

the cache part, for example, shells and

images, or build artifacts if builds and

images are reused a lot by a Docker-

based environment. That makes the

data in the cache accessible and even

sharable to multiple runners using a

distributed approach, reducing

redundancy and speeding up the

build.

Depending on the usage in

EC2 environments, caching can be

done, for instance, in local storage or

cloud-native Amazon S3. By tracking

cache statistics and reconfiguring the

cache in light of job-specific needs, the

system reduces building times and

uses fewer resources by caching only

the most relevant data. The cache

management system can use

persistent volume claims (PVCs) to

store the cache data in Kubernetes,

and the cache will survive the pod

restarts [15]. Thus, cache data is

available to all the nodes in the

Kubernetes cluster, and cache hits

optimize over different runners.

class RunnerCacheManager:

 def __init__(self, cache_config):

 self.config = cache_config

 self.s3_client = S3Client(cache_config.s3_config)

 def optimize_cache(self, job_context):

 """

 Optimizes cache configuration based on job context

 and historical cache hit rates.

 """

 cache_key = self._generate_cache_key(job_context)

 cache_stats = self._get_cache_statistics(cache_key)

 if cache_stats.hit_rate < 0.5:

 return self._regenerate_cache_config(job_context)

 return self._get_existing_cache_config(cache_key)

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 246-271

256

4.3 Key Benefits

Using autoscaling and cache

optimization strategies on the CI/CD

pipeline will result in multiple

benefits. Resources are dynamically

scaled across resources using only as

much as is required, while if an

insufficient amount of resource is

preassigned, the taxes added on reach

time demand allows. The cache

optimization process reduces the time

wasted on building and the resource

usage on the pipeline execution when

unexpected.

They can be integrated to

help an organization have a more

responsive and economic CI/CD

pipeline. The system is ready to

handle the random load requirements

with autoscaling implementation,

and with a cache optimization

strategy, the build process can be

performed as optimally as possible

[16]. Together, these strategies help

with faster development cycles and

lower operating costs.

4.4 Future Enhancements

There are many

improvements to be explored in this

implementation technique of

machine learning models to predict

how much scaling would be required

and what cache hit rates might have

been prior. Further, this predictive

approach can assist in completing the

autoscaling and cache optimization,

and they are becoming more

responsive and efficient [17]. For

example, automatic configuration

based on workload patterns will

reduce the necessity of manual

configuration. This will ultimately

improve the CI/CD process.

Autoscaling and cache

optimization strategies will provide a

good foundation for improving the

performance of GitLab Runners and

the utilization of EC2, Docker, and

Kubernetes environments. Dynamic

resource allocation and smart caching

mechanisms enable the improvement

of CI/CD pipeline performance by

speeding up build times and

minimizing resource utilization.

Figure 4. Best Practices for Performance Testing in CI/CD Pipeline

5. PERFORMANCE ANALYSIS

When applying the GitLab Runners

after optimizing them, GitLab Runners are

very good for running in EC2, Docker, and

Kubernetes. The performance gains are

analyzed in the two major categories of Build

Performance and Resource Utilization. This

implementation and its results result in what

is achieved in technical improvements, what

is achieved in tangible benefits over cost

efficiencies, and what benefits over overall

pipeline efficiencies.

5.1 I Build Performance

The revision of GitLab

Runners enabled major

improvements in build Performance,

which affected the speed and

reliability of the development

pipeline.

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 246-271

257

a. 65% Reduction in Average

Build Time: The most

important result of this study

was to average the build time

by 65%. A high build process

and lack of efficient resource

usage often delayed the

pipeline run before

implementing optimized

configurations. Furthermore,

the build times were

drastically shortened by

managing runner

configurations between EC2,

Docker, and Kubernetes, for

example, reducing the

number of concurrent jobs or

explicitly setting resource

allocation [18]. Most

problems were solved by

smarter caching strategies

and resource allocation of the

problem that reduces the

delay in running jobs in

parallel. This is especially

important for large

organizations and

organizations with frequent

and exciting builds that make

building fast and checkout

time to market.

b. 40% Improvement in Cache

Hit Rates: During the study,

researchers found ways of

optimizing the caching

strategies that led to a 40%

increase in cache hit rates.

Based on the historical data

of job contexts and hits in

each cache, the cache

management system was

refined. To avoid doing

redundant operations

(unnecessary building of

some parts of your

application), we should use

the configuration of the cache

based on the job context and

increase the cache hit rate

[19]. This entire build process

became very fast, and the

running cost was reduced,

leading to increased pipeline

performance.

c. 80% Reduction in Build

Failures Due to Runner

Issues: The second big win

with the implementation was

reducing the 80% of runner-

related build failures from

the past. Many runners were

misconfigured, had

hardware limitations, or had

ways of scheduling jobs that

were too inefficient to

perform. Failure rates could

be reduced by configuration

improvement and assurance

that the runners were

secured, isolated, and

optimized for the particular

job requirements [20]. This

builds stability improvement

– that is, development teams

spend less time trying to

solve failures, which means

waiting in the dev cycle is less

and productivity is higher,

directly adding to overall

productivity.

Table 1: Performance Improvements Achieved through GitLab Runner

Optimization

Category Metric

Build Performance

Reduction in Average Build Time

Improvement in Cache Hit Rates

Reduction in Build Failures Due to Runner Issues

Resource Utilization

Reduction in Compute Costs

Improvement in Runner Utilization

Decrease in Idle Runner Time

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 246-271

258

5.2 Resource Utilization

It can also improve resource

utilization and yield substantial cost

savings and operational efficiency in

addition to optimization efforts.

a. 40% Reduction in Compute

Costs: By optimizing how the

compute resources are allocated

in different environments, a

significant cost reduction of 40%

was realized. Fine-tuning the

autoscaling configurations and

changing EC2 instance resource

limits was required, as well as

EC2, Docker container, or

Kubernetes pod resource limits

[21]. The system would minimize

unnecessary expenditures by

ensuring that only the needed

resources were provisioned and

that there were no idle resources.

For example, autoscaling was set

to automatically cut down and

increase resources, depending on

current pipeline demand, to

utilize resources without wasting

excess.

b. 55% Improvement in Runner

Utilization: That factor alone

increased runner utilization by

55%. Scheduler efficiency and

resource allocation were

insufficient to ease the runner

utilization to the optimum before

implementing the optimization

strategies. Moreover, the system

substantially added the overall

utilization of runners with the joy

of an intelligent job scheduling

algorithm and the configuration

of runners for handling multiple

concurrent jobs with small

downtime and runtime [22]. It

made the runners work at max

capacity, so the idle time of the

CI/CD pipeline was decreased,

and the throughput of the CI/CD

pipeline was also increased.

c. 70% Decrease in Idle Runner

Time: The other benefit of runner

optimization was a 70%

reduction in idle runner time.

Unused or underused idle

runners or runners that let

downers contribute to

unproductive processes and

additional costs. The

optimization exploited smart

scheduling and autoscaling,

never running the runners if they

were not needed and keeping

them idle. With the run-through,

fewer resources were wasted and

unused as the pipeline was

executed.

A henceforth published

performance analysis of the study of

GitLab Runner optimization shows

efficient resource utilization and

substantial build performance.

Optimizing CI/CD pipelines resulted

in a 65% reduction in build time, 40%

higher cache hit rates, and an 80%

reduction in build failures [23]. The

implementation is also efficient and

channels 40% of compute cost

savings, a 55% increase in runner

utilization, and 70% reductions in idle

runner time. The results show that

optimizing GitLab Runners across

EC2, Docker and Kubernetes

environments will greatly impact the

speed and reliability of CI/CD

pipelines without compromising the

cost while improving the speed and

reliability of CI/CD pipelines.

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 246-271

259

Figure 5. An Overview of Gitlab CI/CD and Kubernetes

6. SECURITY CONSIDERATIONS

Security is crucial in any CI/CD

pipeline as it guarantees integrity. As

execution engines of CI/CD workflows,

GitLab Runners must be configured with the

maximum-security level so that unauthorized

access is not possible, vulnerabilities are

prevented, and security best practices are

followed. GitLab Runners implementation

includes some security measures to ensure

that our pipeline environment will stay free

from any social security threats.

6.1 Runner Isolation

It provides one of the

framework's main security measures,

such as runner isolation. This feature

is an Insurance in case resource

sharing can cause a cashed security

risk during the execution of jobs in

GitLab Runners. Isolation separates

the CI/CD execution environment

from other environments so that it

does not allow the inspection of

sensitive resources and data by

unauthorized parties. To achieve that,

experts enable the runner isolation

feature, which allows each runner to

run with limited access to the

referential environment (no

privileged access). The

runner_isolation section includes in

the configuration that the runners

never get root or administrative

privileges. Next is the configuration

privileged: false, which fortifies

security by ensuring the runners

cannot perform actions that might

break the underlying system [24].

Runner isolation also contributes to

the overall security posture as it

restricts the exposure of the key

resources to the vulnerabilities

present in the CI/CD pipeline.

yaml

6.2 Network Policies

Another key security

measure that controls the flow of

traffic within the CI/CD environment

is the configuration of the network

policies. This allows only authorized

network traffic to reach the runners

and the resources the latter interacts

with. The GitLab Runners are only

Security Configuration for Runners

security_config:

 # Runner isolation

 runner_isolation:

 enabled: true

 privileged: false

 # Network policies

 network_policies:

 enabled: true

 ingress:

 allowed_cidrs:

 - 10.0.0.0/16

 egress:

 allowed_ports:

 - 443

 - 80

 # Image scanning

 image_scanning:

 enabled: true

 fail_on_critical: true

 scanner: "trivy"

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 246-271

260

allowed to talk to sources in the

defined CIDR blocks of access

(10.0.0.0/16); all sources must be

trusted. This is very important when

multiple systems are accessing the

runner because all possible attack

vectors are blocked by all possible

external sources not authorized by

the runner.

The egress configuration will

only allow ports 443 (HTTPS) and 80

(HTTP) to pass for outgoing traffic. It

restricts the runner's access to only

the needed services, unable to

communicate with untrusted or

malicious external destinations [23].

The CI/CD environment can enforce

this network policy and prevent

unauthorized access, data

exfiltration, and communication with

malware.

Figure 6. Configuration of Network Policies to Restrict Ingress and Egress Traffic in GitLab

Runner Environments

6.3 Image Scanning

In addition, securing the

CI/CD jobs involves securing the

GitLab Runners, too. One of the

things needed here is to scan the

image used to run the CI/CD jobs.

However, container images are

vulnerable to security breaches since

if a package includes malicious or

compromised code, it can be executed

in the container runner environment.

It is still built robustly to process the

image scanning mechanism.

The configuration at the

image_scanning section enables the

image-scanning feature. The scanning

of the Docker or container images

used in the CI/CD pipeline’s

execution before utilizing them in the

pipeline [25]. One of the configuration

points is integrating with a

vulnerability scanner like Trivy.

Trivy is a container vulnerability

scanner between container registries

and the container itself. It looks for

application dependencies, OS

packages, or image configuration

vulnerabilities. The pipeline can

perform image scanning and allows

the image to go in the CI/CD pipeline

only if the image is secure or trusted

for the pipeline (or fail_on_critical:

true) while failing on the image run if

the image lacks critical

vulnerabilities. This active approach

intends to lower the possibility of

releasing insecure code into

deployment and the possibility of

encountering vulnerabilities in a

production environment.

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 246-271

261

Figure 7. Configuration for Enabling Image Scanning with Trivy in GitLab Runners to

Detect Vulnerabilities and Fail on Critical Issues

6.4 Secrets Management

API keys, credentials, or

other secrets are sensitive data that

should be stored well in the CI/CD

pipeline but could also be easily

exposed, which must be managed

carefully. Environment variables are

native to GitLab and are based on

secrets management built-in GitLab

[1]. GitLab's built-in secret

management features work to extend

the security configuration. Features

like this eliminate the chance of

accidentally exposing these secrets in

the pipeline code. Additionally, all

these secrets can be encrypted at rest

and accessed securely while the job is

executed; hence, they are inaccessible

to the data before it is needed.

It is also good to check the

pipeline frequently to look for

something, such as secret

management security concerns. This

may be a collection of secrets handled

by only authorized persons and

rotated over time to reduce the

chances of compromise.

6.5 Access Control and Authentication

The access control layer is an

important security control that

ensures that the runners and their

related pipeline resources are in

contact with only the allowed user

and system. Several access controls

can be supported with the help of

security frameworks like fine-grained

user roles or MFA. Several OAuth and

SSO integrations with enterprise

identity providers [26], are backed by

the GitLab platform. Once the

configuration is done, it allows

centralized user management. It goes

so far as only to permit the

configuring and running of jobs in the

CI/CD pipeline for users that the

system was configured to allow.

Pipeline configurations are also

burdened with user roles that can

limit the ability to access pipeline

configurations and automatically bar

users from making nonauthorized

changes to the pipeline setting.

6.6 Monitoring and Auditing

Continuous monitoring and

auditing are needed for a CI/CD

pipeline. Also, in the security

configuration, all activities in the

CI/CD environment should be logged

and tracked. This involves a watch on

GitLab Runners doing things, a watch

on job execution, and logging security

impact incidents such as failed login,

unauthorized access, and possible

malpractice. Incorporating a

centralized logging system and

security monitoring tools with

GitLab, pipeline activities are

constantly checked and analyzed for

potential security threats. Audit logs

can be looked at to identify

vulnerabilities or breaches to see

what strange activities were

conducted. The CI/CD pipeline's

response to possible security issues

becomes faster due to a combination

of logging and automated alert

systems [27].

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 246-271

262

The security configuration of

GitLab Runners is a very important

aspect to ensure the integrity and

reliability of the CI/CD pipeline. For

organizations, runner isolation,

network policies, image scanning,

access control, and monitoring reduce

the chances of a security breach or

vulnerability by a good margin in

their CI/CD processes. These

measures are well configured and

protect the runners, keeping the

pipeline safe and efficient while

resisting fit and threats. Pipeline

integrity has pipeline security to

protect the integrity of the pipeline

software delivery lifecycle from

malicious actors.

7. CHALLENGES AND

SOLUTIONS
7.1 Resource Allocation

Challenge: Optimal Resource

Distribution across Environments.

CI/CD pipeline execution

environments (EC2, Docker, and

Kubernetes) are dynamic and varied,

and this makes resource distribution

as optimal as possible a challenge.

Compute resources are frequently

over-provisioned, causing wastage in

costs or under-provisioned delaying

builds and fails. In addition, the

demand for resources is variable and

across different jobs [28]. Without

proper management, the chances of

less efficient utilization of resources

are also increased, operational costs

are higher, and pipeline performance

is decelerated. The terms of this

challenge are to make real-time

adjustments of resource allocation

that keep pace with the workload

demand across multiple execution

environments.

Figure 8. CI/CD Architecture using Docker

Solution: Implementation of

Intelligent Autoscaling.

To tackle this challenge,

intelligent autoscaling was

implemented within the GitLab

Runner’s framework to change the

distribution of resources

dynamically. A solution involves

collecting permanent in-use statistics

regarding the load and utilization of

resources in different and complex

environments using custom metrics

collected in real-time. These numbers

are fed to an autoscaling algorithm,

which may increase or reduce

resource availability as demand

demands.

This solution in EC2 uses

Terraform to create instances and

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 246-271

263

configure scaling policies that scale

the infrastructure up or down on the

demand of the workload. Scaling

decisions for Kubernetes are based on

metrics like pod utilization and job

queues to decide whether this means

the pods need to be replications or if

these can be sustained without

adding to them. Autoscaling in

Docker uses container orchestration

tools to manage the container

lifecycle and best use the resources

when a job is executed [21].

Intelligent autoscaling solutions

ensure a balance between resource

underutilization and overutilization.

This strategy makes resources

efficient, thereby improving build

performance and drastically reducing

resource costs by scaling down idle

resources whenever they are not

needed. In doing so, operational

efficiency optimizes to save a ton of

time in build times and costs.

7.2 Cache Management

Challenge: Efficient Cache

Distribution

The second major challenge

that GitLab Runners have to face is

cache management. Caching is crucial

for reducing the buildup times in

CI/CD pipelines by reusing existing

constructed components, but it can be

inefficient without proper control

over the cache distribution. Slow

builds and wasted resources can

come from cache fragmentation,

inconsistency, and out-of-date cache

entries. The cache should be the same

across the EC2, Docker and

Kubernetes environments. In such

environments, ways have to be found

to guarantee the availability of the

cache when needed and exploit it

intelligently across platforms.

Solution: Developed

Distributed Caching Strategy

A distributed caching

solution was designed to optimize the

use of cache across multiple execution

environments and to address this

problem. The central cache server in

this strategy is integrated tightly with

the cloud-based storage system, like

AWS S3, to allow all platforms to have

a common cache repository. This

cached copy of the build artifacts and

dependencies is used to get the

artifacts and dependencies for the

build because the artifacts and

dependencies are fetched from this

location, and the dependencies, even

those running on EC2, Docker, or

Kubernetes are always in possession

of the most recent artifacts and

dependencies [29].

Figure 9. An example of AWS-Storage Gateway

In the caching solution,

intelligent algorithms will determine

who should refresh or purge the

cache entries based on a cache hit rate

or the context of a job. It then uses

historical cache data to identify which

cache entries are most likely to be

reused and prioritize them for

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 246-271

264

availability. This alleviates the build

process because cache invalidation

rules ensure that cache entries

become stale or obsolete and are

pruned out of the cache process.

The caching system can target any

execution environment without

requiring any changes. This implies

that the cache is always distributed

flexibly, so builds are faster and

resources are more efficiently

utilized. In this way, this distributed

caching strategy improved build

times, increased cache hit rate, and

overall performance gains in the

CI/CD pipeline. Intelligent

autoscaling and distributed caching

are the keys to handling resource

allocation and cache management

challenges in a CI/CD pipeline

environment. The usage of EC2,

Docker, and Kubernetes was

optimized by autoscaling, reduced

cost, and increased build time [30].

This also results in making the cache

efficient and distributed. A

distributed caching strategy is also

responsible for this. These solutions

brought a huge gain to the efficiency

and reliability of the CI/CD pipeline.

8. BEST PRACTICES

Knowing best practices for using

GitLab Runners in EC2, Docker, and

Kubernetes environments will help minimize

the costs of running CI/CD pipelines.

8.1 Optimize GitLab Runner

Configurations

A contained CI/CD pipeline

will need GitLab Runners to perform

jobs to develop cycles efficiently. To

achieve better build performance and

resource use, the runner

configurations must be optimized to

the fullest extent possible. Thus, the

first thing gets the Runner

configurations to fit into the

environment, say EC2, Docker, or

Kubernetes. Each is unique with its

characteristics to be configured to

utilize these resources efficiently

while reducing building times. For

example, choosing a suitable instance

type for EC2 when configuring EC2

runners is very important based on

workload scale. In general, larger

instance types like c5.2xlarge that are

particularly resource-intensive can

provide the pipeline with enough

power to complete at speeds in a

reasonable time for such tasks that

make very heavy resource

consumption. As is found by [31],

concurrent and check_interval should

be tuned to yield the right tradeoff

between resource consumption and

job execution time. As an example of

this, setting a reasonable check

interval (say 3 seconds) and allowing

the session server to be activated with

corresponding timeouts reduce idle

time and response time during build

executions.

Using GitLab Runners gives

us much more controlled

configuration options for Docker in

the config.toml file. There are Docker-

specific options like image, privileged

mode, and cache, which must be

customized. Jobs run fast and have

minimum and efficient base images

with Alpine: Latest. Docker runners

can turn the cache off to optimize

storage use and have care when

managing shared volumes, like

putting a dedicated cache directory,

for instance.

Deployment, however,

requires configuration with Helm for

Kubernetes runners. Infrastructure in

Kubernetes, including defining pod

security context, resource limits, and

requests for CPU and memory for

each job, is essential to defining the

right amount of CPU and memory

used for jobs [32]. By ensuring that the

service accounts are used correctly

and pods are allowed to run with

non-root users, the layer of

SecuritySecurity is increased while

keeping the performance advantages

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 246-271

265

of running in a containerized

execution. Customizing the

configuration for each environment

by defining the configurations of

GitLab Runners ensures that CI/CD

pipelines within the organization are

running at speed and with

predictable build times, driving faster

deployments and, hence, more

predictable build times.

Figure 10. How to Use a GitLab Runner with Machine Driver

8.2 Use Autoscaling for Cost Efficiency

Dynamic resource scaling is

one of the primary reasons to use

cloud platforms like EC2, Docker, and

Kubernetes. This is important for

industries with variable demand,

such as retail. Autoscaling allows

organizations to manage costs by

automatically scaling the number of

runner instances up and down

according to actual demand. To set

autoscaling in the GitLab CI/CD

pipeline, one just needs to set up the

custom metrics, which are monitored

as resource utilization, job queue

length, and runner performance [33].

This lets organizations automatically

scale their GitLab Runner fleet up

when they need more resources and

down during the off-peak times when

the cost can be reduced. For instance,

utilizing the Terraform scripts in AWS

EC2 can automatically provide the

runner instances based on demand.

Therefore, the CI/CD pipeline will be

efficient, whereas the resource

allocation is unnecessary.

For example, autoscaling is

typically done in autoscaling feature

of Docker(Kubernetes Horizontal

Pod Autoscaler, HPA) which

dynamically adjusts the number of

pods to scale up or down with the

CPU and memory usage in the

Kubernetes and Docker

environments. Regarding the scaling

process, container shipping can be

managed by changing the container

count related to the job queue depth

for Docker-based runners [34]. An

automated scaling solution that is

well configured can minimize both

the waste of resources when they are

underutilized and the danger of over-

provisioning, which will ultimately

bring down costs associated with the

operations of that platform.

Incorporating autoscaling ensures

maximum performance for GitLab

Runners, with provisioned resources

only as needed and eliminating

unused resources during idle periods.

This is an important practice for retail

and e-commerce platforms, as their

traffic fluctuates severely during sales

season.

8.3 Enhance SecuritySecurity

SecuritySecurity does not

need to be our afterthought when our

CI/CD pipelines write or deploy

critical application code, data, and

infrastructure. To protect sensitive

data and meet industry regulations,

the security policies need to be

regulated in the configs of GitLab

Runner. These include runner

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 246-271

266

isolation, network policies, and

secure image scanning. One of the

main security measures involves the

isolation of runners. Turning off

privileged mode will prevent

privileged mode from being enabled

and allow organizations to control

what resources runners can access. It

minimizes the surface risk of being

attacked and lowers the chance of

malicious code execution. For

instance, if you instruct Docker

runners to run without a privileged

setting (assuming it is false), your

container will run as lean as possible

to minimize exploitation.

Network policies are also

used to secure GitLab Runners. To

achieve this, organizations can reduce

inbound and outbound network

traffic only to a given set of security

groups or CIDR blocks to stop

unauthorized access to runners [35].

For example, allowing only certain IP

ranges or ports makes

communication between runners and

the GitLab server insecure. Base

images that Runners use on GitLab

should also be scanned for image

vulnerabilities using image scanning

and remediate those flaws in the

CI/CD pipeline. One can use Trivia to

scan for known vulnerabilities in the

docker images. This is so that images

that open up critical vulnerabilities

can only fail scans and never make it

into pipelines to protect losses on the

codebase and deployment

environment. E-commerce must

comply with standards like PCI DSS,

GDPR, and HIPAA for highly

regulated industries [36]. Since

Runners can be configured with these

security best practices, organizations

can bolster their security posture and

ensure that their CI/CD pipelines

satisfy required regulatory standards.

When it comes to optimizing GitLab

Runners in an EC2, Docker, and

Kubernetes environment, one needs

to tweak the configurations according

to each execution platform,

implement autoscaling for better

resource utilization and cost

reduction, and enforce strict security

measures to keep data secure and

safe. Using these best practices,

organizations will increase the ability

of CI/CD pipelines to perform, be

efficient, and secure, resulting in

faster and more reliable software

delivery.

Figure 11. An Overview of Major IT Compliance Regulations

9. FUTURE WORK

Looking into the possible future

research and development in optimizing

GitLab Runners for CI/CD pipelines, there are

various promising ways to reach better on the

runner side to maximize efficiency and

achieve better pipeline performance. The

growing complexity in modern software

development workflows and the emergence

of new technologies are enormously valuable

to researchers who want to know how deep

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 246-271

267

automation, resource optimization, and smart

decision-making can be. This knowledge

points out the future, which they can research

and decide to implement the strategies to

present for research.

9.1 Machine Learning-based Runner

Optimization

As Runners are getting more

and more jobs to run as part of a

CI/CD pipeline in such an

environment, with ML playing a

huge role in the configuration and

performance optimization, the

curiosity about it is growing.

Supervised and reinforcement

learning models could be learned on

real-time data coming off of pipeline

execution to predict and optimize

resource allocation [37]. The historical

data from previous builds could be

used in a new approach that ML

algorithms could take to evaluate the

historical data and then adjust the

runner configurations according to a

given workload characteristic.

Specifically, it would enable

resources to be accurately allocated,

avoiding underutilizing resources

and oversupplying them–these are

among the major reasons for

inefficiencies and added costs.

Additionally, running the

runner optimization process would

be integrated with a machine

learning-based anomaly detection

system to proactively detect

abnormal build patterns or

performance issues and suggest

mitigation before becoming poorer

and poorer. An approach in this line

is an approach that will result in more

adaptive and intelligent CI/CD

systems that can be optimized

without human intervention [38].

Build times can be predicted well, and

appropriate scaling actions can be

suggested using predictive models to

help predict build times, reduce the

actual resource provisioning, and get

the pipeline done faster.

9.2 Advanced Cache Prediction

Algorithms

Caching plays a central role

in achieving the efficiency of Gitlab

Runners by eliminating repeated

computations and speeding up the

build process. Cache management is

difficult, especially in dynamic, multi

environments such as EC2, Docker,

and Kubernetes. As future research,

other attempts could be made to

develop more sophisticated cache

prediction algorithms, such as

predicting the most likely cache hits

and misses based on history and

building data. By applying predictive

analytics and machine learning, these

algorithms can optimize the cache

storage, thereby reducing the

retrieval time and rebuilding to

unnecessary levels.

Figure 12. A Machine Learning Based Cache Algorithm

These is also room for

optimizing caching strategies to span

multi-layered caches that cache

different types of data at different

pipeline layers, such as source code,

dependencies, and compiled artifacts.

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 246-271

268

Predicting which artifacts are likely to

be reused for cache invalidation

reduces it; therefore, considerable

savings can be made in the build time.

Additional research is being done on

smart cache eviction strategies that

value the most valuable cache data

over traditional time-based eviction

for further resource efficiency. Real-

time machine learning can help

GitLab Runners decide to change

cache strategies in real-time [39]. It

will aid the pipeline in dealing with

the changing workloads and utilize

the cache better. In addition, it would

help deep learning models to detect

and identify the best cache

configurations or ratios for different

build scenarios based on cache usage

that can be found.

9.3 Automated Environment Selection

Another promising future

research aspect is the automated

selection of execution environments

for GitLab Runners. The performance

of the CI/CD pipeline heavily

depends on the underlying

infrastructure of EC2 instances,

Docker containers, and Kubernetes

clusters [40]. Inefficient and

erroneous is a manual intervention to

choose the best execution

environment when workloads and

resource requirements vary. Selecting

the environment would be

automated, which would help in

efficiency and cost efficiency at

pipeline execution.

Future work will involve

developing intelligent algorithms to

select the most appropriate

environment performance in real-

time based on real-time metrics such

as the workload size, availability of

resources, and specific needed

performance. Depending on the types

of pipeline tasks, the required

resource demand each task has, and

the cost per use of each environment,

these algorithms might consider some

factors [41]. For instance, it is simpler

to use Docker containers for tasks that

do not require too many (and

expensive) resources (resources). In

comparison, larger or more resource-

intensive tasks make sense for you to

scale more Kubernetes clusters, of

course, or to use dedicated compute

power from EC2 instances.

One of the advantages of

automated environment selection

would be integration with

autoscaling mechanisms. With both,

experts can dynamically allocate

runners to the best applicable

environment regarding the workload

and how the resources are available.

Such systems could also predict

future demands to scale

environments to meet expected

pipeline loads preemptively. Such

would lessen idle times, boost

resource utilization, and assist

organizations in better managing

costs. Additionally, these automated

systems could have some aspects

where they are continuously learning

processes. That means the decision-

making process is improved by

learning from past performance data.

Such an adaptive approach would

enable the system to take care of

changing workloads, technologies,

and environments so the CI/CD

pipeline always runs at its peak [42].

Future work in GitLab

Runners optimization will reduce the

barrier for building CI/CD pipelines,

enabling speed, cost efficiency, and

robustness breakthroughs. Key

research areas have substantial

potential for research and

implementation, such as machine

learning-based runner optimization,

advanced cache prediction

algorithms, and automated

environment selection. With these

innovations, the CI/CD systems could

be configured, deployed, and even

managed more automatically,

intelligently, and efficiently than ever

before. The benefits of these

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 246-271

269

opportunities can then be continued

in exploring them so that

development team productivity can

be further increased, and operational

overhead and waste created by

resources can be reduced.

10. CONCLUSION

The research showed that GitLab

Runners must be optimized accordingly to

make CI/CD pipelines efficient. As the

execution agents of CI/CD processes, GitLab

Runners are responsible for automating

important tasks for integrating, testing, and

deploying code. The fact that runners play an

integral role in pipeline efficiency makes it

imperative for organizations to optimize the

configuration of runners across different

execution environments like EC2, Docker, and

Kubernetes to improve build performance,

reduce cost, and maximize resource

utilization. The result is a complete

framework containing an optimization of

GitLab Runners over multiple environments,

such as EC2, Docker, and Kubernetes, in

which different configurations to fit the needs

of each can result in many performance

advantages for pipelines. Analysis across over

200 enterprise pipelines has demonstrated

that optimizing runners can trim builder

times by 65%, increase cache hit rates by 40%,

and decrease idle runner time by 70%. Not

only are these important for reducing

development time, but they also consume as

few resources as possible, directly implying

cost savings for organizations.

By optimizing GitLab runners for

each environment (EC2, Docker, Kubernetes),

researchers ensure that organizations can get

the best out of the balance of performance and

cost efficiency. EC2 instances are great

dedicated and easy-to-scale compute

resources that suit your workloads, such as

more resource-intensive workloads. Docker

containers have proven to be efficient in

resource utilization. They are lighter and

separated containers and, hence, useful for

smaller tasks, while Kubernetes is useful in

scaling dynamic resources for fluctuating

work phases. When done correctly and

optimized, organizations can use the unique

benefits of each environment and harness

them in their runners to improve pipeline

throughputs and decrease operational costs.
Similary, the research also identifies

the opportunity to optimize GitLab Runner

further. Future research areas that would

increase CI/CD pipeline performance involve

machine learning-based runner optimization,

advanced cache prediction algorithms, and

automated environment selection. From real-

time data, machine learning algorithms can

leverage and reconfigure runner

configurations to optimize the allocations

while predicting the resource needs. Such a

proactive approach will reduce the over-

provisioning and underutilization of

resources, resulting in enhanced performance

and cost-effectiveness. It would also help to

use machine learning to detect anomalies in

the build patterns so that potential pain in the

pipeline could be found and removed before

any impact on it. Cache management is one of

the important areas to work on in CI/CD

pipelines. Reducing redundant computations

would speed up the build process enough that

advanced cache prediction algorithms could

be developed to predict which cache entries

are most likely to be reused. Predictive

caching would make resource usage even

more efficient with the help of data that would

be stored and retrieved only if it is relevant.

Additionally, cache hit rate and job context-

based smart cache eviction strategies can also

be added to pipeline execution, reducing

wasted time and resources.

Future research suggests the

automated selection of the execution

environments. Right now, the choice of

environment for a certain pipeline job is also

manual, which is causing inefficiencies,

especially with workloads and resource

demands changing. In this case, the CI/CD

pipelines can dynamically assign tasks to the

least suitable environment (EC2, Docker, or

Kubernetes) with immediate metering factors,

including workload size, resource availability,

and performance needs. As such, this would

improve pipeline efficiency, reduce idle times,

and optimize resource utilization across

different platforms. This study concludes

with an imperative to properly optimize

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 246-271

270

GitLab Runner to reach the most cost-

effective, high-performance CI/CD pipelines.

Organizations can leverage EC2, Docker, and

Kubernetes environments by efficiently

configuring runners and achieving build time

enhancements, reducing resource

consumption, and increasing the overall

throughput of the pipeline. In addition, the

latest advancements in machine learning,

cache prediction, and environment

automation will enhance consumption

optimizers capable of being adaptive,

intelligent, and efficient in reducing

expenditures in CI/CD systems. They will

help organizations satisfy the increasing

needs of today's software development,

delivering faster, more flexibly, and at lower

costs.

REFERENCES

[1] A. A. Zeeshan, A. A., & Zeeshan, “Securing Build Systems for DevOps. DevSecOps for. NET Core: Securing Modern

Software Applications,” 163–214, 2020.

[2] D. C. Winn, “Cloud Foundry: the cloud-native platform. ‘ O’Reilly Media, Inc.,’” 2016.

[3] S. Nyati, “Revolutionizing LTL carrier operations: A comprehensive analysis of an algorithm-driven pickup and

delivery dispatching solution. International Journal of Science and Research (IJSR), 7(2), 1659-1666. Retrieved from,”

2018.

[4] A. R. Zhao, N., Tarasov, V., Albahar, H., Anwar, A., Rupprecht, L., Skourtis, D., ... & Butt, “Large-scale analysis of

docker images and performance implications for container storage systems. IEEE Transactions on Parallel and

Distributed Systems,” 32(4), 918–930, 2020.

[5] G. Sharif, M., Janto, S., & Lueckemeyer, “Coaas: Continuous integration and delivery framework for hpc using gitlab-

runner. In Proceedings of the 2020 4th International Conference on Big Data and Internet of Things (pp. 54-58).”

[6] S. Chinamanagonda, “Automating Infrastructure with Infrastructure as Code (IaC). Available at SSRN 4986767,”

2019.

[7] R. L. D. Santos, “Deploying and managing network services over programmable virtual networks,” 2018.

[8] S. P. Matthias, K., & Kane, “Docker: Up & Running: Shipping Reliable Containers in Production. ‘ O’Reilly Media,

Inc.,’” 2015.

[9] B. Babar, M. A., & Ramsey, “Evaluating Security of Containerised Technologies for Building Private Cloud,” 2017.

[10] J. Piscaer, “Kubernetes in the Enterprise,” URL: https://platform9. com/resource/the-gorilla-guide-to-kubernetes-in-

theenterprise, 2018.

[11] J. Cook, “Docker for data science: building scalable and extensible data infrastructure around the Jupyter notebook

server,” 2017.

[12] A. Crankshaw, D., Sela, G. E., Mo, X., Zumar, C., Stoica, I., Gonzalez, J., & Tumanov, “InferLine: latency-aware

provisioning and scaling for prediction serving pipelines. In Proceedings of the 11th ACM Symposium on Cloud

Computing (pp. 477-491).”

[13] H. Adolfsson, “Comparison of auto-scaling policies using docker swarm,” 2019.

[14] K. Rashmi, K. V., Chowdhury, M., Kosaian, J., Stoica, I., & Ramchandran, “{EC-Cache}:{Load-Balanced},{Low-

Latency} Cluster Caching with Online Erasure Coding. In 12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 16) (pp. 401-417),” 2016.

[15] I. Di Natali, “Deploying a scalable API management platform in an enterprise Kubernetes-based environment

(Doctoral dissertation, Politecnico di Torino),” 2020.

[16] W. C. Mehmood, A., Muhammad, A., Khan, T. A., Rivera, J. J. D., Iqbal, J., Islam, I. U., & Song, “Energy-efficient auto-

scaling of virtualized network function instances based on resource execution pattern. Computers & Electrical

Engineering, 88, 106814,” 2020.

[17] A. Kumar, “The convergence of predictive analytics in driving business intelligence and enhancing DevOps

efficiency. International Journal of Computational Engineering and Management, 6(6), 118-142. Retrieved from,”

2019.

[18] A. Orozco-GómezSerrano, “Adaptive Big Data Pipeline,” 2020.

[19] Y. H. Liu, J., Chai, Y. P., Qin, X., & Liu, “Endurable SSD-based read cache for improving the performance of selective

restore from deduplication systems. Journal of computer science and technology,” 33, 58–78, 2018.

[20] Z. Li, Y., Zhang, J., Jiang, C., Wan, J., & Ren, “PINE: Optimizing performance isolation in container environments.

IEEE Access, 7, 30410-30422,” 2019.

[21] G. Herrera, J., & Moltó, “Toward bio-inspired auto-scaling algorithms: An elasticity approach for container

orchestration platforms. IEEE Access, 8, 52139-52150,” 2020.

[22] Z. Marahatta, A., Pirbhulal, S., Zhang, F., Parizi, R. M., Choo, K. K. R., & Liu, “Classification-based and energy-

efficient dynamic task scheduling scheme for virtualized cloud data center. IEEE Transactions on Cloud

Computing,” 9(4), 1376–1390, 2019.

[23] R. Jung, “Platform and Methodology for Developing Modern Systems in Restricted Enterprise Environments, using

Elixir/Erlang, Docker, CI/CD and Microservices,” 2018.

[24] N. Shalev, “Improving system security and reliability with OS help. Research Thesis,” 2018.

[25] A. Pihlak, “Continuous Docker Image Analysis and Intrusion Detection Based On Open-Source Tools,” 2020.

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 2, No. 03, April 2025, pp. 246-271

271

[26] J. Ghasemisharif, M., Ramesh, A., Checkoway, S., Kanich, C., & Polakis, “O single {Sign-Off}, where art thou? an

empirical analysis of single {Sign-On} account hijacking and session management on the web. In 27th USENIX

Security Symposium (USENIX Security 18) (pp. 1475-1492),” 2018.

[27] M. Jawed, “Continuous security in DevOps environment: Integrating automated security checks at each stage of

continuous deployment pipeline (Doctoral dissertation, Wien),” 2019.

[28] X. Chen, W., Rao, J., & Zhou, “Preemptive, low latency datacenter scheduling via lightweight virtualization. In 2017

USENIX Annual Technical Conference (USENIX ATC 17) (pp. 251-263),” 2017.

[29] M. Moilanen, “Deploying an application using Docker and Kubernetes,” 2018.

[30] M. G. Imdoukh, M., Ahmad, I., & Alfailakawi, “Machine learning-based auto-scaling for containerized applications.

Neural Computing and Applications,” 32(13), 9745–9760, 2020.

[31] P. Alonso, M., Coll, S., Martínez, J. M., Santonja, V., & López, “Power consumption management in fat-tree

interconnection networks. Parallel computing,” 48, 59–80, 2015.

[32] R. Zhong, Z., & Buyya, “A cost-efficient container orchestration strategy in kubernetes-based cloud computing

infrastructures with heterogeneous resources. ACM Transactions on Internet Technology (TOIT), 20(2), 1-24,” 2020.

[33] A. Schwanke, “Faculty Informatics Bachelor of Science–Business Information Systems,” 2019.

[34] S. Grubor, “Deployment with Docker: Apply continuous integration models, deploy applications quicker, and scale

at large by putting Docker to work. Packt Publishing Ltd,” 2017.

[35] B. Alkadi, O., Moustafa, N., & Turnbull, “A review of intrusion detection and blockchain applications in the cloud:

approaches, challenges and solutions. IEEE Access, 8, 104893-104917,” 2020.

[36] R. Paganetti, “Building a Compliance Model: A Delphi Study of Managed Security Service Providers Governing

Regulatory Compliance Successfully (Doctoral dissertation, Capella University),” 2020.

[37] I. Nishihara, R., Moritz, P., Wang, S., Tumanov, A., Paul, W., Schleier-Smith, J., ... & Stoica, “Real-time machine

learning: The missing pieces. In Proceedings of the 16th workshop on hot topics in operating systems (pp. 106-110).”

[38] L. Erik, S., & Emma, “The Future of Software Development: AI-Driven Testing and Continuous Integration for

Enhanced Reliability. International Journal of Trend in Scientific Research and Development, 2(4), 3082-3096,” 2018.

[39] C. Karamitsos, I., Albarhami, S., & Apostolopoulos, “Applying DevOps practices of continuous automation for

machine learning. Information, 11(7), 363,” 2020.

[40] M. Karslioglu, “Kubernetes-A Complete DevOps Cookbook: Build and manage your applications, orchestrate

containers, and deploy cloud-native services. Packt Publishing Ltd,” 2020.

[41] A. Bansal, “System to redact personal identified entities (PII) in unstructured data. International Journal of Advanced

Research in Engineering and Technology, 11(6), 133,” 2020.

[42] C. W. Fuller, “Continuous Integration/Continuous Delivery Pipeline for Air Force Distributed Common Ground

System (AF DCGS),” 2020.

