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 Drug discovery has long been characterized by extensive timelines, 

high costs, and significant risks, often taking more than a decade and 

billions of dollars to bring a single drug to market. However, the 

convergence of generative artificial intelligence (AI) and big data 

analytics is fundamentally reshaping this landscape. This paper 

provides an in-depth analysis of generative AI especially models such 

as generative adversarial networks (GANs), variational autoencoders 

(VAEs), and transformer-based architectures combined with vast 

biological and chemical datasets, is transforming molecular design, 

target identification, and compound optimization. Through a 

systematic review of literature, comparative model evaluation, and 

real-world case studies including AlphaFold, the paper explores the 

efficacy of these technologies in accelerating drug discovery. A hybrid 

methodology combining data mining, model testing, and 

bioinformatics simulation is employed. The results demonstrate 

significant improvements in candidate molecule generation, predictive 

modeling accuracy, and time-to-market for new drugs. Future 

challenges such as data interoperability, ethical considerations, and 

regulatory compliance are also discussed. The study concludes by 

highlighting the immense potential of AI and big data in ushering a 

new era of precision medicine and personalized therapeutics. 
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1. INTRODUCTION 

The pharmaceutical industry is 

during a technological renaissance, with 

artificial intelligence (AI) and big data 

analytics leading the charge. Traditionally, 

drug discovery involved a trial-and-error 

process that could take over 10 years and cost 

upwards of $2.6 billion [1]. The high failure 

rate estimated at nearly 90% during clinical 

trials emphasizes the need for smarter, faster, 

and more reliable approaches [2]–[6]. 

Generative AI and big data analytics offer a 

transformative approach by significantly 

enhancing the efficiency and success rate of 

drug development. AI models can analyze 

vast datasets encompassing chemical 

structures, genomic profiles, clinical trial data, 

and real-time health metrics to identify 

promising drug candidates. Particularly, 

generative AI models can design novel 

molecules with optimized pharmacokinetic 

and pharmacodynamic properties [7]–[10]. 
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The integration of AI in drug discovery is not 

just about accelerating timeframes; it 

represents a shift from intuition-based to data-

driven science. This paradigm change enables 

researchers to explore vast chemical spaces, 

identify hidden patterns in disease 

progression, and personalize treatments 

based on individual genetic makeup [11]–[13]. 

For example, the COVID-19 pandemic served 

as a catalyst for rapid AI adoption, 

showcasing how machine learning models 

could be used to repurpose existing drugs and 

accelerate vaccine development. 

Moreover, the confluence of wearable 

technologies, cloud-based data platforms, and 

AI algorithms allows for real-time monitoring 

of patient responses and adaptive clinical 

trials [14]. These innovations are reshaping 

how pharmaceutical companies approach 

everything from early-stage research to post-

marketing surveillance [15]–[18]. This study 

aims to explore the multifaceted roles of 

generative AI and big data in accelerating 

drug discovery. We present a comprehensive 

review of state-of-the-art AI models, their 

integration with biomedical datasets, and 

applications in drug design, target prediction, 

and disease modeling. The study also includes 

practical insights into tools such as AlphaFold 

for structural biology and real-time patient 

data integration through wearable 

technologies. 

2. LITERATURE REVIEW 
2.1 Historical Perspective on Drug 

Discovery 

Drug discovery traditionally 

follows a linear pipeline: target 

identification, lead compound 

discovery, preclinical testing, and 

clinical trials. The introduction of 

high-throughput screening (HTS) in 

the 1990s enabled the testing of 

thousands of compounds 

simultaneously but often led to a 

deluge of false positives [19]. 

Genomic and proteomic technologies 

further added complexity by 

generating massive datasets with 

limited integration capability. 

 

2.2 Evolution of AI in Drug Discovery 

Initial AI applications in 

pharmacology included quantitative 

structure-activity relationship 

(QSAR) models and logistic 

regression for toxicity prediction. The 

field matured with the introduction of 

deep learning, particularly 

convolutional neural networks 

(CNNs) for molecular property 

prediction and recurrent neural 

networks (RNNs) for sequence 

generation [20]. Recent years have 

seen the emergence of generative 

models such as GANs, VAEs, and 

transformer-based architectures. 

These models go beyond prediction 

to design, enabling the generation of 

novel chemical entities de novo [21]–

[23]. 

2.3 Big Data Sources in Drug 

Development 

Data is the cornerstone of 

modern drug development, enabling 

the application of artificial 

intelligence (AI) and machine 

learning (ML) to accelerate discovery 

processes. Key big data sources 

fueling these technologies include 

genomic and proteomic datasets from 

initiatives like the Human Genome 

Project, ENCODE (Encyclopedia of 

DNA Elements), and The Cancer 

Genome Atlas (TCGA), which 

provide comprehensive molecular 

profiles essential for identifying 

disease biomarkers and therapeutic 

targets [24], [25]. Chemical compound 

databases such as ChEMBL, 

PubChem, and ZINC15 offer vast 

repositories of bioactive molecules 

and their properties, supporting 

virtual screening and drug-likeness 

evaluation [26], [27]. Clinical data, 

particularly from electronic health 

records (EHRs) and real-world 

evidence (RWE), provide valuable 

insights into patient outcomes, drug 

efficacy, and adverse events across 

diverse populations [28]. 

Additionally, wearable technologies 
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and IoT-based devices contribute 

real-time physiological data, 

supporting longitudinal studies and 

personalized medicine approaches 

[29], [30]. These data sources 

collectively drive predictive 

modeling, compound optimization, 

and informed decision-making 

throughout the drug discovery 

pipeline [17], [20], [31]–[34].  

3. MATERIALS AND METHODS 
3.1 Research Framework 

This study adopts a hybrid 

research methodology that integrates 

systematic review, computational 

modeling, and simulation-based 

validation to explore the role of 

generative AI and big data analytics 

in accelerating drug discovery [35]–

[37]. Firstly, a Systematic Literature 

Review (SLR) is conducted following 

the PRISMA (Preferred Reporting 

Items for Systematic Reviews and 

Meta-Analyses) guidelines to ensure 

transparency, reproducibility, and 

comprehensiveness in identifying 

and synthesizing relevant scientific 

literature [38]. This step establishes 

the theoretical and empirical 

foundation of the study, identifying 

key trends, technologies, and research 

gaps. Secondly, a Comparative Model 

Analysis is carried out to evaluate 

various generative models such as 

Variational Autoencoders (VAEs), 

Generative Adversarial Networks 

(GANs), and Transformer-based 

architectures with a focus on their 

efficacy in de novo molecule design, 

chemical space exploration, and 

property prediction. Lastly, In Silico 

Simulations are employed to validate 

the generated molecules through 

virtual screening and molecular 

docking techniques, assessing 

binding affinity and interaction 

stability with target proteins. This 

triangulated approach ensures a 

robust and multidimensional 

understanding of how AI-driven 

models and big data can 

synergistically enhance drug 

discovery pipelines. 

3.2 Data Collection 

The data collection process 

for this study is strategically 

structured to encompass a diverse 

and high-quality set of sources that 

support a comprehensive analysis of 

generative AI applications in drug 

discovery. Primary data sources 

include open-source chemical 

compound databases such as ZINC15 

and ChEMBL, which provide curated 

molecular structures, 

pharmacological properties, and 

bioactivity data critical for training 

and validating generative models 

[26], [39]. Additionally, peer-

reviewed scientific literature is 

systematically retrieved from 

reputable indexing platforms like 

PubMed and Scopus, ensuring the 

inclusion of rigorously vetted and up-

to-date findings related to AI, big data 

analytics, and pharmaceutical 

innovations. These articles contribute 

to foundational theories, 

methodological frameworks, and 

recent advancements in the field. 

Furthermore, model repositories such 

as GitHub-hosted projects like 

DeepChem and OpenBioML are 

leveraged to access and experiment 

with state-of-the-art machine learning 

and deep learning architectures 

designed for molecular modeling and 

bioinformatics tasks [40]. 

Collectively, these data sources form 

a robust foundation for evaluating 

model performance, benchmarking 

simulation results, and drawing 

evidence-based conclusions. 

3.3 Tools and Software 

A suite of specialized tools 

and software platforms is employed 

in this study to support the 

implementation, visualization, and 

validation of AI-driven drug 

discovery models. For programming 

and model development, Python 
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serves as the primary language due to 

its versatility and extensive ecosystem 

of scientific libraries. Deep learning 

frameworks such as PyTorch and 

TensorFlow are used to construct and 

train generative models including 

GANs (Generative Adversarial 

Networks), VAEs (Variational 

Autoencoders), and Transformer-

based architecture like ChemBERTa, 

which are tailored for molecular 

representation and property 

prediction [41]–[44]. 

For data visualization and 

exploratory analysis, libraries like 

Matplotlib and Seaborn are utilized to 

generate clear, publication-ready 

plots of molecular distributions, loss 

functions, and docking scores. In the 

bioinformatics and molecular 

docking domain, tools such as 

AutoDock Vina enable high-

throughput virtual screening of 

ligand-target interactions by 

calculating binding affinities, while 

PyMOL provides advanced 3D 

visualization of protein-ligand 

complexes to assess structural 

stability and binding conformations 

[45]. 

Together, these tools form an 

integrated computational pipeline 

that facilitates the end-to-end process 

of in silico drug design from model 

training to molecular visualization 

and binding validation. 

3.4 Evaluation Metrics 

To assess the performance 

and practical utility of the generative 

AI models in drug discovery, several 

key evaluation metrics are employed, 

each capturing a critical aspect of 

molecular quality and relevance. 

Validity is measured as the 

percentage of generated molecules 

that are chemically valid, structurally 

sound and syntactically correct 

according to SMILES (Simplified 

Molecular Input Line Entry System) 

representations ensuring the 

molecules adhere to known chemical 

bonding rules [46]–[50]. Uniqueness 

evaluates the proportion of valid 

molecules that are not present in the 

original training dataset, reflecting 

the model's ability to produce novel 

compounds and avoid memorization. 

In addition, Drug-likeness is 

assessed using Lipinski’s Rule of Five, 

a widely adopted heuristic that 

considers molecular properties such 

as molecular weight, lipophilicity 

(logP), hydrogen bond donors, and 

acceptors to predict the oral 

bioavailability of a compound [51]–

[53]. Finally, Binding Affinity is 

evaluated through molecular docking 

simulations using tools like AutoDock 

Vina, which calculate the docking 

scores based on the strength and 

stability of interactions between 

generated ligands and biological 

targets, providing insights into the 

therapeutic potential of the 

compounds [45]. Together, these 

metrics offer a comprehensive 

evaluation framework for both the 

generative quality and biological 

relevance of candidate drug 

molecules. 

 

4. RESULTS AND DISCUSSION 
4.1 Molecular Generation Performance 

The molecular generation 

performance of various AI models 

was quantitatively evaluated using 

standard benchmarks, with a focus on 

validity, uniqueness, and drug-

likeness. Variational Autoencoders 

(VAEs) trained on the ZINC15 dataset 

demonstrated strong performance, 

generating molecules with 88% 

chemical validity, 63% uniqueness, 

and 71% adherence to Lipinski’s Rule 

of Five, indicating a solid capacity to 

produce novel yet pharmaceutically 

relevant compounds (Figure 1). 
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Figure 1. Comparative Performance of AI Models in Molecular Generation Based on 

Validity, Uniqueness, and Drug-Likeness. 

However, Generative 

Adversarial Networks (GANs), while 

capable of generating more 

structurally diverse molecular 

scaffolds, suffered from reduced 

chemical validity, achieving 

approximately 80%, likely due to 

instability in adversarial training and 

mode collapse [54]. On the other 

hand, Transformer-based models 

(e.g., ChemBERTa) outperformed 

both VAEs and GANs in balancing 

novelty and chemical feasibility. 

These models successfully 

maintained high validity while 

achieving significant diversity in the 

generated chemical space, thanks to 

their ability to capture long-range 

dependencies and chemical context 

through self-attention mechanisms 

[41]. This indicates that Transformer-

based architectures are particularly 

well-suited for de novo molecular 

design when both accuracy and 

innovation are required. 

4.2 Protein Target Prediction 

The significant impact of 

AlphaFold-predicted protein 

structures on the accuracy of 

molecular docking, specifically in 

terms of binding energy prediction. 

Compared to traditional homology-

based models, which show no 

improvement (0.0 kcal/mol), 

AlphaFold structures achieve a 

substantial enhancement of 1.3 

kcal/mol. This improvement indicates 

that AlphaFold provides more precise 

protein conformations, enabling more 

accurate estimation of ligand-binding 

affinities during in silico docking 

simulations. Such a gain is considered 

meaningful in drug discovery, as 

even modest changes in binding free 

energy can critically affect the 

identification and optimization of 

potential therapeutic compounds. 

Advancements in protein structure 

prediction have significantly 

enhanced the precision of drug-target 

interaction modeling. In this study, 

AlphaFold-predicted protein 

structures were employed to perform 

molecular docking simulations, 

leading to improved accuracy in 

binding affinity estimation (Figure 2). 

Compared to earlier homology-based 

models, the use of AlphaFold 

structures resulted in an average 

improvement of 1.3 kcal/mol in 

predicted binding energies. This 

improvement is substantial in 
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molecular docking terms, as even 

small changes in binding free energy 

can indicate stronger and more stable 

ligand-protein interactions [55]. The 

enhanced structural resolution 

provided by AlphaFold allows for 

more reliable identification of binding 

pockets and interaction residues, 

contributing to more accurate in silico 

screening and prioritization of drug 

candidates. This demonstrates the 

growing synergy between AI-driven 

protein modeling and compound 

screening, ultimately streamlining the 

lead optimization phase of drug 

development. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Impact of AlphaFold Structures on Molecular Docking Accuracy 

4.3 Limitations 

The COVID-19 pandemic 

highlighted the transformative 

potential of AI-driven drug discovery 

in real-world scenarios. Companies 

like BenevolentAI and Exscientia 

successfully deployed their AI 

platforms to accelerate therapeutic 

development against SARS-CoV-2. 

Notably, BenevolentAI utilized its 

knowledge graph and machine 

learning algorithms to rapidly 

identify baricitinib, a Janus kinase 

(JAK) inhibitor, as a candidate for 

repurposing within weeks 

subsequently validated and approved 

for emergency use in COVID-19 

treatment [56]. Simultaneously, 

Exscientia applied its AI models to 

screen billions of compounds and 

prioritize new antiviral candidates, 

drastically reducing the early-phase 

discovery timeline. These successes 

demonstrate how integrating big data 

with AI-enabled systems can 

compress drug discovery cycles from 

years to weeks, especially during 

public health emergencies. The ability 

to analyze complex biological 

interactions, predict drug-target 

binding, and propose clinically 

actionable compounds underscores 

the real-world utility and 

responsiveness of AI in combating 

emerging diseases [2], [21], [34]. 

While generative AI and big data 

analytics are revolutionizing drug 

discovery, their widespread adoption 

is hampered by several intrinsic and 

practical limitations. Beyond the 

dependence on data quality, another 

major concern is data heterogeneity. 

Drug discovery data comes from 

diverse sources genomic databases, 
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chemical libraries, electronic health 

records, and lab-generated 

experimental data each with varying 

formats, annotations, and levels of 

completeness. The lack of 

standardization poses challenges for 

data integration and preprocessing, 

which are critical for ensuring robust 

model performance [9], [10], [51], [57], 

[58]. 

Furthermore, the lack of 

interpretability in many deep 

learning models remains a persistent 

barrier. In high-stakes domains like 

pharmacology, where decisions affect 

human health, stakeholders including 

regulatory bodies, clinicians, and 

researchers demand transparency 

and rationale behind AI predictions. 

Without explainable outputs, even 

highly accurate models may face 

skepticism and delay in clinical 

adoption. Efforts to integrate 

explainable AI (XAI) frameworks are 

ongoing, but balancing performance 

and interpretability remains an 

unresolved challenge [47], [48], [59]. 

Another critical issue is the limited 

access to proprietary pharmaceutical 

datasets. Much of the high-quality, 

real-world data generated by 

pharmaceutical companies including 

high-throughput screening results, 

adverse event profiles, and 

pharmacokinetics are locked behind 

paywalls or confidentiality 

agreements. This lack of accessibility 

restricts the development and 

validation of more sophisticated, real-

world-ready AI models, creating a 

gap between academic innovation 

and industrial application [60]–[62]. 

Collaboration between academia, 

industry, and regulatory agencies is 

necessary to establish secure data-

sharing frameworks that preserve 

intellectual property while advancing 

research. 

In addition, computational 

resource constraints can impede 

scalability, particularly for smaller 

research institutions or startups. 

Training large-scale generative 

models such as Transformers or 

graph neural networks (GNNs) on 

complex biochemical datasets 

requires high-performance 

computing (HPC) infrastructure, 

which may not be universally 

accessible. These demands also raise 

concerns about energy efficiency and 

sustainability in AI-driven research 

[15], [16], [18], [63], [64]. Finally, 

regulatory and ethical considerations 

present emerging hurdles. The 

integration of AI in drug discovery 

must align with strict regulatory 

standards to ensure safety, efficacy, 

and reproducibility. However, 

regulatory frameworks for AI-driven 

drug development are still evolving, 

with ambiguity around model 

validation, data provenance, and 

accountability. Ethical issues, such as 

data privacy, algorithmic bias, and 

equitable access to AI-designed 

drugs, further complicate the 

landscape and require 

multidisciplinary solutions. 

 

5. CONCLUSION 

Generative AI and big data analytics 

are redefining the landscape of drug 

discovery and development, marking a 

paradigm shift from traditional trial-and-

error approaches to intelligent, data-driven 

innovation. These technologies empower 

researchers to generate novel molecular 

structures, predict protein-ligand interactions 

with remarkable accuracy, and leverage 

diverse datasets including genomic, chemical, 

clinical, and real-time health data to accelerate 

every phase of the drug development 

pipeline. By significantly reducing discovery 

timeframes, lowering development costs, and 

enhancing the precision of therapeutic 

targeting, AI-driven methods offer a scalable 

and transformative solution to current 

pharmaceutical challenges. Despite these 

advances, critical challenges remain including 

the need for high-quality, interoperable data; 



The Eastasouth Journal of Information System and Computer Science (ESISCS)       

pp. 11-20 

 

18 

transparent and interpretable AI models; 

ethical considerations; and alignment with 

evolving regulatory frameworks. Overcoming 

these barriers will require collaborative efforts 

across academia, industry, and government. 

Nevertheless, the trajectory is clear: with 

ongoing improvements in machine learning 

algorithms, computational infrastructure, and 

biomedical data access, the future of drug 

discovery is poised to become faster, smarter, 

and more personalized. As we move forward, 

the integration of generative AI and big data 

analytics will not only streamline drug 

development but also open new avenues for 

tackling complex diseases with precision 

therapeutics.
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