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 One of the biggest public health problems of the twenty-first century is 

metabolic disorders, especially Type 2 diabetes (T2D). Morbidity, 

mortality, and medical expenses can be significantly decreased by early 

detection of at-risk people. However, nonlinear, multi-factorial, and 

high-dimensional interactions that influence the development of 

disease are not well captured by traditional risk-scoring methods. In 

order to predict and interpret the risk of type 2 diabetes and related 

metabolic disorders, this study creates an Explainable AI (XAI) 

framework for precision public health that combines multi-modal data, 

such as genomic profiles, lifestyle factors, socioeconomic determinants, 

and electronic health records (EHR). We create a federated, hybrid 

model that combines Random Forest classifiers, Deep Neural 

Networks (DNN), and Gradient Boosting Machines 

(LightGBM/XGBoost), building on federated and ensemble learning 

paradigms. Shapley Additive Explanations (SHAP) and counterfactual 

analysis are used to uncover personalized, actionable risk profiles in 

order to attain explainability. Harmonized multi-institutional datasets 

with over 200,000 records gathered from several U.S. health systems 

are used to train the model. The results show a calibrated Brier score of 

0.12, sensitivity of 89%, specificity of 87%, and AUC of 0.93 ± 0.01. The 

socioeconomic deprivation index, polygenic risk score, BMI slope, and 

HbA1c trajectory are the main factors, according to SHAP study. 

Federated deployment protects data privacy while preserving 

performance. These results show that federated, explainable AI 

pipelines can facilitate population-based, privacy-preserving, andThe 

goal of precision public health is being advanced by large-scale early-

warning systems for managing metabolic diseases. 

Keywords: 

Explainable AI; 

Federated Learning; 

Multi-Modal Data Fusion; 

Precision Public Health; 

SHAP Interpretability; 

Type 2 Diabetes Prediction 

 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Name: Borhan Uddin 

Institution: University of Information Technology and Sciences (UITS), Dhaka 1212, Bangladesh 

Email: borhanuddinuits@gmail.com  

 

 

 

https://esj.eastasouth-institute.com/index.php/esiscs
https://creativecommons.org/licenses/by-sa/4.0/
mailto:borhanuddinuits@gmail.com


The Eastasouth Journal of Information System and Computer Science (ESISCS)       

 

Vol. 3, No. 02, December 2025, pp. 164-178 

 

165 

1. INTRODUCTION 
1.1. Background and Significance 

Metabolic disorders, 

including Type 2 diabetes (T2D), 

obesity, and dyslipidemia, are the 

most rapidly expanding category of 

chronic diseases globally. The 

International Diabetes Federation 

(2024) predicts that over 530 million 

adults today have diabetes, a 

number anticipated to surpass 640 

million by 2030. Diabetes impacts 

approximately 38 million 

individuals in the United States and 

incurs $412 billion in direct and 

indirect annual expenses (CDC, 

2023). In addition to direct healthcare 

costs, the societal impact 

encompasses diminished 

productivity, early mortality, and a 

decline in quality of life. 

Timely identification and 

focused prevention are essential. 

Traditional diagnosis protocols 

depend on intermittent fasting-

glucose assessments, HbA1c 

evaluations, and clinician-

administered risk assessments (e.g., 

FINDRISC, ADA Risk Test). 

Nonetheless, these methodologies 

presuppose linearity and overlook 

contextual factors like genetics, 

behavior, and environmental 

exposure. Simultaneously, electronic 

health records (EHR), genetic 

biobanks, and wearable devices 

produce extensive amounts of both 

organized and unstructured data 

that are mostly underexploited in 

risk assessment. 

The integration of Artificial 

Intelligence (AI), Machine Learning 

(ML), and Big Data Analytics offers 

unique potential to shift diabetes 

prevention from population-based 

risk assessment to personalized 

prediction [1]–[4]. Recent research by 

[5] and associates has shown that AI-

driven frameworks can attain greater 

accuracy than conventional 

statistical methods by elucidating 

intricate nonlinear relationships 

among clinical, biological, and social 

determinants of health. 

Nevertheless, numerous significant 

obstacles persist: (a) insufficient 

interpretability hindering clinical 

confidence, (b) disaggregation of 

multi-source data, and (c) data 

privacy issues restricting cross-

institutional model development. 

1.2. Research Problem 

Although AI models can 

achieve superior predicted accuracy, 

their lack of transparency ("black-

box" characteristic) hinders clinical 

implementation. Healthcare 

providers require transparent 

models that not only forecast risk but 

also elucidate the features 

influencing each prediction. 

Furthermore, regulatory 

frameworks like HIPAA and GDPR 

inhibit the centralization of sensitive 

patient information, hence 

mandating federated learning (FL) 

architectures that enable models to 

learn from distributed data without 

transferring it between locations [6]. 

Moreover, current research 

frequently concentrates on discrete 

diseases or certain data modalities. 

Metabolic disorders have shared 

pathophysiological pathways and 

socio-behavioral factors. 

Consequently, a multi-modal, 

federated, and explainable 

framework is required to identify 

common patterns in metabolic 

disorders while offering insights at 

the individual level. 

1.3. Objectives and Contributions 

This study seeks to design, 

implement, and assess an 

Explainable AI (XAI) framework for 

precision public health, 

concentrating on the early detection 

of Type 2 Diabetes (T2D) and 

associated metabolic disorders 

through the development of a 

federated, multi-modal AI pipeline 

that incorporates electronic health 
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records (EHR), genomic, lifestyle, 

and socioeconomic data [7]. The 

framework prioritizes explainability 

by utilizing SHAP and 

counterfactual interpretations to 

guarantee model transparency and 

clinical applicability, while its 

performance is meticulously 

evaluated across ensemble 

methods—including Random 

Forest, LightGBM, XGBoost, and 

Deep Neural Networks—under both 

centralized and federated settings 

[8]. Moreover, the methodology aims 

to enhance public health translation 

by illustrating how AI-generated risk 

scores may guide focused 

preventative measures and policy 

development. This study introduces 

a novel federated explainable 

artificial intelligence (XAI) 

framework that integrates artificial 

intelligence with precision public 

health. It broadens the analytical 

focus from disease-specific 

predictions to cross-disorder risk 

profiling within the metabolic 

spectrum, incorporates social 

determinants and environmental 

factors into AI-driven models, 

ensures interpretability to foster 

clinician trust, and validates 

scalability and privacy preservation 

through federated simulations 

across various synthetic institutions. 

2. LITERATURE REVIEW 
2.1. AI in Metabolic Disorder Prediction 

AI has played an 

increasingly important role in 

disease risk prediction during the 

last decade. Classical techniques like 

logistic regression and Cox models 

have evolved into ensemble and 

deep-learning architectures that can 

handle nonlinearity and high-

dimensional data [9]. In T2D, 

algorithms such as Random Forest, 

XGBoost, and Neural Networks have 

obtained AUC scores greater than 

0.90 on large cohorts. However, most 

research rely on limited feature sets 

and centralized data. 

[10] demonstrated how 

integrating gut microbiome data 

with clinical records enhanced 

precision therapy for metabolic 

illnesses. Similarly, [11] 

demonstrated that AI can decode the 

multi-omics interactions that drive 

insulin resistance. [12] emphasized 

deep learning's ability to integrate 

genomic and phenotypic data for 

illness subtyping [13]. These 

breakthroughs demonstrate the 

usefulness of multi-modal AI but fall 

short of federated, explainable 

implementations in public health. 

2.2. From Precision Medicine to 

Precision Public Health 

Precision public health 

(PPH) broadens the scope of 

precision medicine beyond 

individual clinical treatment to 

population-level policy [14]. It 

employs artificial intelligence and 

extensive data analytics to provide 

"the appropriate intervention to the 

suitable demographic at the optimal 

moment." Implementing PPH in 

metabolic illnesses entails utilizing 

population-scale data to identify 

high-risk categories prior to disease 

onset. [15] highlighted that the 

amalgamation of AI with public 

health surveillance can uncover 

latent relationships between social 

and biological risk variables. 

However, few systems offer the 

interpretability necessary for faith in 

policy. 

The shift from precision 

medicine to PPH necessitates 

interoperability, transparency, and 

ethical artificial intelligence. This 

research expands upon the PPH 

paradigm by developing a XAI 

framework that provides insights at 

both individual and population 

levels. 
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2.3. Explainable AI in Healthcare 

Explainable AI (XAI) has 

arisen to mitigate the trust problem 

associated with black-box models 

[16]. Techniques like LIME, SHAP, 

and Integrated Gradients assess the 

contribution of each input to a result 

[17]. In clinical settings, 

explainability serves three purposes: 

(a) adherence to regulations, (b) 

interpretability for clinicians, and (c) 

communication with patients [18]. 

Recent research on diabetes 

prediction indicates that SHAP can 

identify biologically plausible risk 

factors, such as BMI, age, and HbA1c 

[9]. Nevertheless, limited initiatives 

have applied explainability to 

federated systems, wherein model 

changes are decentralized [19]. 

2.4. Federated Learning and Data 

Governance 

Federated Learning (FL) is a 

decentralized framework enabling 

models to learn from data located at 

several places without the need to 

exchange raw data [20] FL has been 

utilized in oncology, radiography, 

and pharmacovigilance with nearly 

centralized precision. By 

implementing federated learning, 

healthcare organizations can 

navigate legal obstacles (e.g., 

HIPAA) and safeguard data 

sovereignty [21]. Nonetheless, 

federated learning presents new 

issues, including statistical 

heterogeneity and communication 

costs [22]. Recent advancements 

encompass adaptive federated 

optimization and privacy-preserving 

aggregation through safe multi-

party computation [23]. 

The integration of 

Explainable Artificial Intelligence 

(XAI) with Federated Learning (FL) 

is a cutting-edge research domain. 

[24] introduced a federated SHAP 

methodology that calculates feature 

significance locally and consolidates 

it centrally. Our research employs a 

comparable approach, integrating 

interpretability with privacy-

conscious modeling. 

2.5. Socioeconomic Determinants and 

Equity in AI Models 

Health disparities are 

fundamental to public health 

artificial intelligence. Socioeconomic 

position, race, education, and 

healthcare access affect illness risk 

and data accessibility [25]. 

Unaddressed bias in training data 

might worsen discrepancies. 

Fairness-aware AI methodologies—

re-sampling, re-weighting, and 

adversarial de-biasing—are 

progressively employed to 

equilibrate representation. 

Integrating socioeconomic variables 

into our multi-modal framework 

improves equity by identifying 

structurally vulnerable populations. 

2.6. Gaps Identified 

Despite swift progress in 

artificial intelligence within 

healthcare, the current literature 

identifies numerous significant gaps 

that limit its translational efficacy. 

Significant fragmentation of data 

types persists, since few prediction 

models successfully combine 

clinical, genetic, behavioral, and 

social variables within a cohesive 

analytical framework. Furthermore, 

the lack of federated architecture in 

current research constrains 

scalability and adherence to privacy 

requirements like HIPAA and 

GDPR, since centralized models 

require data aggregation across 

institutions. Moreover, 

explainability is constrained, as 

interpretability methods such as 

SHAP or LIME are infrequently 

utilized in a systematic manner 

across federated or multi-

institutional contexts, thus 

diminishing clinician trust and 

regulatory preparedness. 

Ultimately, there is a deficiency in 

public-health translation, as AI-
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generated outputs seldom progress 

beyond predictive performance to 

guide policy formulation, 

community interventions, or 

precision prevention strategies—

underscoring the critical necessity 

for cohesive, transparent, and 

privacy-conscious frameworks that 

correspond with tangible public-

health goals. 

3. METHODOLOGY 
3.1. Research Design Overview 

The research employed an 

explanatory-sequential mixed-

methods framework, integrating 

quantitative predictive modeling 

with qualitative interpretative 

analysis. Figure 1 illustrates the 

comprehensive workflow, consisting 

of five interrelated phases: Data 

collecting and harmonization, Pre-

processing and feature engineering, 

Model building in centralized and 

federated environments, Analysis of 

explainability and interpretability, 

and Evaluation and validation. 

Each phase was executed 

within a secure research-cloud 

environment adhering to HIPAA 

requirements. All tests were 

conducted utilizing Python 3.11, 

TensorFlow 2.14, Scikit-learn 1.5, and 

LightGBM 4.3 frameworks. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Federated Explainable AI Workflow for Precision Public Health 

3.2. Data Sources 

We gathered anonymized, 

de-identified data from three 

partnering institutions in the United 

States: 

1. The University Hospital 

Network (UHN) maintains 

electronic health records 

(EHR) from 2012-2024, 

including laboratory 

findings, vitals, medications, 

and diagnostic codes. 

2. GHI's polygenic risk scores 

(PRS) and chosen SNP-level 

data are linked using 

pseudonymous IDs. 

3. The Community Wellness 

Survey (CWS) includes self-

reported lifestyle, nutrition, 

and socioeconomic 

characteristics. 

After harmonization, the 

combined dataset included around 

204,600 unique people, over 150 

candidate features, and an average 
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follow-up of 8.3 years. The key 

binary outcome was Type 2 Diabetes 

onset within 24 months of baseline. 

3.3. Data Pre-Processing 

Records with implausible or 

inconsistent data, such as negative 

BMI or HbA1c > 25%, were 

eliminated (about 1.8%). Continuous 

characteristics (z-score) were 

normalized, and categorical 

variables were encoded once. To 

account for temporal heterogeneity, 

all numerical variables were 

transformed to annual averages or 

last-observation-carried-forward 

(LOCF) metrics. 

Missingness analysis 

showed <5% for > 90% of 

characteristics. Continuous variables 

were imputed using K-nearest-

neighbors (K = 5), whereas 

categorical data were imputed with 

mode imputation or a "missing" 

category. Variables with more than 

30% missingness were eliminated. 

Sensitivity testing showed that 

imputation reduced AUC by <0.01. 

We developed clinically 

interpretable temporal and 

interaction features: 

a. Trend variables: Δ 

HbA1c/year, Δ BMI/year, Δ 

systolic BP/year. 

b. Variability metrics: standard 

deviation of fasting glucose 

and weight. 

c. Composite indices: 

Metabolic Syndrome Index 

(MSI) = weighted sum of 

(HbA1c z, triglyceride z, 

BMI z). 

d. Behavioral scores: Physical 

Activity Index and Diet 

Diversity Score (from CWS). 

e. Socioeconomic Index (SEI): 

principal-component 

summary of income, 

education, and ZIP-level 

deprivation. 

Feature distributions were 

verified for plausibility and 

multicollinearity (VIF < 3). 

We applied a two-stage 

approach: 

1. Filter stage: mutual-

information and χ² tests 

retained the top 100 features. 

2. Wrapper stage: SHAP-based 

ranking from an initial 

LightGBM model selected 

the top 30 predictors with 

the highest mean |SHAP| 

values. 

Stability was verified via 5-

fold cross-validation; overlap of 

selected features > 90 %. 

3.4. Model Development 

Five foundational machine-

learning models were created and 

assessed to determine predictive 

efficacy across different algorithmic 

complexities. The models employed 

included Logistic Regression (LR) 

with L2 regularization for a linear 

interpretive baseline; Random Forest 

(RF) utilizing 500 decision trees to 

capture nonlinear relationships and 

feature interactions; Extreme 

Gradient Boosting (XGBoost) and 

LightGBM, configured with a leaf-

wise depth of 10, to harness 

gradient-boosted ensemble learning 

for enhanced accuracy and 

efficiency; and a Deep Neural 

Network (DNN) featuring three 

hidden layers (128–64–32 neurons) 

with ReLU activation and a dropout 

rate of 0.3 to reduce overfitting. 

Hyperparameter tuning for all 

models was conducted via a 

randomized grid search comprising 

50 iterations and five-fold stratified 

cross-validation, thereby assuring 

robust model generalization and 

consistent performance across data 

subsets. 

Predicted probabilities from 

Random Forest, LightGBM, and 

Deep Neural Networks were utilized 

as inputs for a meta-learner (Logistic 
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Regression), so creating a stacked 

ensemble. Weights were modified to 

enhance validation AUC. 

We executed Federated 

Averaging (FedAvg) across three 

virtual nodes (UHN, GHI, CWS) to 

emulate cross-institutional privacy. 

Each node trained a local model for 

five epochs, after which gradients 

were centrally aggregated following 

the addition of differential-privacy 

noise (σ = 0.01). The number of 

communication rounds is 50. All 

studies were conducted on NVIDIA 

A100 GPUs. 

3.5. Explainability Framework 

The study utilized a dual-

layered explainability framework for 

transparency and interpretability, 

integrating global and local 

interpretations through Shapley 

Additive Explanations (SHAP) and 

counterfactual analysis. Globally, 

SHAP values quantified each 

feature's overall contribution to the 

model's predictions, while 

dependence and summary plots 

illustrated non-linear interactions 

among critical variables such as BMI 

and HbA1c, uncovering interacting 

patterns that influence metabolic 

risk. At the local level, SHAP force 

graphs offered personalized 

explanations, demonstrating how 

particular feature values affected an 

individual's classification as high or 

low risk. In addition, counterfactual 

simulations were conducted 

utilizing the DiCE library to 

ascertain the smallest and actionable 

modifications in attributes—such as 

decreasing BMI or enhancing 

physical activity—that could alter a 

prediction from “high risk” to “low 

risk.” Collectively, these 

explainability strategies converted 

the model's output into clinically 

relevant and individualized insights, 

facilitating customized lifestyle 

treatments and bolstering clinician 

confidence in AI-assisted decision-

making. 

3.6. Evaluation Metrics and Validation 

The model's performance 

was meticulously assessed using a 

reserved test set that constituted 20% 

of the entire dataset to guarantee an 

impartial evaluation of its 

generalization capacity. A thorough 

array of performance measurements 

was utilized, encompassing Area 

Under the ROC Curve (AUC) for 

evaluating discriminative capability, 

in addition to accuracy, sensitivity, 

specificity, precision, F1-score, 

balanced accuracy, and the Brier 

score for assessing probability 

calibration. Furthermore, Decision 

Curve Analysis (DCA) was 

performed to assess the model's 

clinical utility by measuring net 

benefit at different threshold 

probabilities. To provide statistical 

robustness, 95% confidence intervals 

were bootstrapped over 1,000 

resampling iterations, encapsulating 

the diversity in performance 

estimates. Ultimately, DeLong’s test 

was utilized to assess AUC values 

among competing models, with p < 

0.05 signifying statistically 

significant disparities in predicting 

performance. 

4. RESULTS AND FINDINGS 
4.1. Descriptive Statistics 

Among 204,600 participants, 

47.2 % were male, mean age = 49.8 ± 

13.7 years, mean BMI = 28.9 ± 5.8 

kg/m². Baseline pre-diabetes 

prevalence = 11.4 %. Over two years, 

18,720 (9.1 %) developed T2D. Table 

1 summarizes key features for cases 

vs controls. 
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Table 1. Selected Features 

Feature T2D (+) Mean ± SD T2D (–) Mean ± SD p-value 

HbA1c (%) 6.4 ± 0.8 5.5 ± 0.4 < 0.001 

BMI (kg/m²) 31.2 ± 6.1 27.6 ± 5.4 < 0.001 

Triglycerides (mg/dL) 181 ± 46 134 ± 39 < 0.001 

Physical Activity Index 3.2 ± 1.0 4.4 ± 0.9 < 0.001 

Socioeconomic Index 0.37 ± 0.12 0.52 ± 0.15 < 0.001 

Significant differences align 

with known epidemiological 

patterns, validating data integrity. 

4.2. Model Performance (centralized 

training) 

Table 2. Summarizes Performance Metrics on The Test Set 

Model AUC Sensitivity Specificity F1 
Balanced 

Accuracy 

Logistic Regression 0.82 0.75 0.78 0.74 0.76 

Random Forest 0.90 0.85 0.84 0.83 0.85 

LightGBM 0.91 0.87 0.85 0.85 0.86 

XGBoost 0.91 0.86 0.86 0.85 0.86 

Deep Neural Network 0.89 0.83 0.84 0.82 0.84 

Stacked Ensemble 0.93 ± 0.01 0.89 0.87 0.88 0.88 

The ensemble significantly 

outperformed all baselines (DeLong 

p < 0.001 vs LR). Calibration curve 

slope = 1.03 (ideal = 1.0), Brier score = 

0.12, indicating strong probability 

calibration. Figure 2 (ROC curve) 

shows consistent gain across 

thresholds. 

 

 

 

 

 

 

 

 

 

Figure 2. ROC curves across models 

4.3. Federated Learning Results Under the three-node 

Federated Averaging setup: 

Table 3. Federated Learning Results under Federated Averaging (Three-Node Setup)

Model AUC (federated) Δ AUC vs central Accuracy Brier 

LightGBM 0.905 –0.005 0.84 0.13 

DNN (FedAvg) 0.897 –0.008 0.83 0.14 

Federated Stacked Ensemble 0.925 ± 0.01 –0.005 0.86 0.13 
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Performance loss ≤ 0.5 %, 

demonstrating federated viability 

without privacy compromise. 

Communication cost ≈ 250 MB for 50 

rounds—manageable on typical 

health-network bandwidth. 

4.4. Explainability and Feature 

Importance 

Figure 3 (SHAP summary) 

ranks in the top 15 features driving 

risk predictions: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. SHAP Summary Plot of Top Features Driving Type 2 Diabetes Risk Prediction 

Positive SHAP values 

increase risk probability, while 

negative values reduce them. 

Interactions show non-linear effects, 

e.g., high PRS and low physical 

activity produce super-additive risk. 

Local explanations for randomly 

selected patients illustrated in Figure 

4 demonstrate individual-level 

reasoning: e.g., a patient aged 52 

with BMI 31 and HbA1c 6.2 % had 

SHAP sum +0.35 (85 % predicted 

risk); counterfactual simulation 

suggested reducing BMI by 3 kg/m² 

would decrease risk to ≈ 50 %. 

 

 

 

 

 

 

 

 

 

Figure 4. Local SHAP Explanation and Counterfactual Simulation for an Individual Patient 
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4.5. Ablation and Robustness Analysis Removing each top feature 

and retraining the ensemble yielded 

the following AUC drops: 

Table 4. Robustness Evaluation Through Feature Ablation (ΔAUC)

Feature Removed Δ AUC 

HbA1c slope –0.045 

BMI trajectory –0.038 

PRS –0.031 

SEI –0.027 

Physical Activity Index –0.020 

The cumulative five-feature 

removal reduced AUC to 0.86, 

confirming their dominant influence. 

Cross-subgroup analysis by sex, 

ethnicity, and income revealed AUC 

stability (± 0.01), indicating model 

generalizability and equity. 

4.6. Comparison with Clinical Risk 

Scores 

Compared to the American 

Diabetes Association (ADA) score 

(AUC 0.76) and Finnish Diabetes 

Risk Score (FINDRISC; AUC 0.78), 

our Explainable AI framework 

achieved a relative improvement of ≈ 

20 %. Notably, integration of social 

determinants (SEI) raised AUC by 

0.02, demonstrating the value of 

public-health contextualization. 

4.7. Public-Health Scenario Simulation 

To illustrate policy utility, 

we simulated three intervention 

scenarios using model-predicted risk 

deciles for a population of 100,000 

adults: 

Table 5. Intervention Scenarios and Projected 2-Year T2D Reduction

Scenario Target Decile Intervention Type 

Projected 

2-year T2D 

reduction 

A Top 10 % risk Lifestyle coaching + diet counseling –28 % 

B Top 20 % risk Lifestyle + metformin screening –33 % 

C 
Top 10 % (low-income areas 

only) 
Community-based outreach –35 % 

Scenario C produced the 

largest reduction per capita, 

underscoring the framework’s value 

for targeted precision public-health 

interventions. 

4.8. Summary of Findings 

a. The federated ensemble 

model achieved AUC ≈ 0.93 

with excellent calibration. 

b. Federated training 

preserved accuracy while 

ensuring data sovereignty. 

c. SHAP interpretability 

provided clinically coherent 

explanations of risk. 

d. Socioeconomic features 

meaningfully enhanced 

predictive fairness and 

equity. 

e. Simulation analyses 

demonstrated public-health 

applicability for risk-

targeted interventions. 

 

5. DISCUSSION 
5.1. Overview 

This research established 

and validated an Explainable AI 

(XAI) framework for the early 

identification of Type 2 Diabetes 

(T2D) and related metabolic illnesses 

via a federated, multi-modal 

predictive modeling pipeline. The 

amalgamation of varied data—
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encompassing clinical, genetic, 

behavioral, and socioeconomic 

aspects—produced a formidable 

ensemble model exhibiting elevated 

prediction accuracy (AUC = 0.93) 

and excellent calibration (Brier = 

0.12). The explainability layer, 

utilizing SHAP and counterfactual 

reasoning, guaranteed 

interpretability and clinical 

confidence. Federated learning (FL) 

facilitates multi-institutional 

collaboration while safeguarding 

data privacy, attaining performance 

comparable to centralized systems. 

The results correspond with 

the increasing agreement that 

precision public health, when 

bolstered by ethical and transparent 

AI, has the potential to transform 

early illness prevention (Topol, 2019; 

Capobianco, 2022). This section 

analyzes the empirical results via 

four perspectives: (1) 

methodological implications, (2) 

clinical and policy significance, (3) 

ethical and governance issues, and 

(4) limitations and future research. 

5.2. Methodological Implications 

When compared to 

conventional uni-modal approaches, 

the model's predictive accuracy was 

greatly improved by the integration 

of multi-modal data sources, such as 

genomic profiles, lifestyle behaviors, 

electronic health records (EHR), and 

socioeconomic indicators. This 

confirmed that disease onset is 

fundamentally multi-causal and 

influenced by interdependent 

biological, behavioral, and social 

factors. In line with previous studies 

on metabolic syndrome, the top 

SHAP-ranked predictors—HbA1c 

slope, BMI trajectory, polygenic risk 

score (PRS), and socioeconomic 

deprivation—form a risk profile that 

is both physiologically and socially 

contextualized [10], [25]. Notably, 

including social determinants 

reduced algorithmic bias commonly 

found in solely biomedical AI 

systems and increased fairness while 

also improving overall accuracy. 

This highlights the need of 

integrating population-health 

context into model construction. 

Additionally, under stringent data-

governance frameworks like GDPR 

and HIPAA, federated learning 

demonstrated less than 1% 

performance deterioration 

compared to centralized training, 

confirming its appropriateness for 

multi-institutional collaboration 

[20]. This shows that when 

communication costs are minimized, 

privacy-preserving AI may preserve 

efficiency and security. Lastly, the 

interpretability gap between black-

box algorithms and clinical 

reasoning was closed by adding a 

strong explainability layer that 

combined dependence charts, 

counterfactual simulations, and 

SHAP-based feature attribution. The 

framework enables clinicians to 

convert complex model outputs into 

individualized, evidence-based 

counseling by providing examples of 

practical lifestyle changes (e.g., 

lowering BMI by 3 kg/m² to halve 

predicted risk), which builds trust 

and promotes real-world adoption 

[18]. 

5.3. Clinical and Public-Health 

Relevance 

Conventional predictive 

models in healthcare have 

predominantly focused on 

individual-level risk assessment, 

resulting in restricted scalability for 

population-wide preventative 

initiatives. This work illustrates that 

explainable federated AI can 

transcend clinical decision support 

to facilitate population-level 

analytics, revealing high-risk 

clusters for targeted interventions 

and policy initiatives. When 

combined with geographic and 

demographic dashboards, such 
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systems can facilitate the equitable 

allocation of preventative resources 

to neglected areas, exemplifying the 

ideals of precision public health [15]. 

The simulation scenarios indicated 

that targeting interventions at high-

risk deciles, especially in low-income 

ZIP codes, could decrease the 

incidence of Type 2 Diabetes by 

roughly 35% within two years, 

demonstrating AI's capacity as a 

policy tool rather than solely a 

diagnostic resource. The viability of 

implementation depends on 

incorporating these models into 

clinical workflows via interaction 

with electronic health record (EHR) 

systems and clinical decision 

support systems (CDSS). The 

model's robust calibration facilitates 

real-time adjustments to a patient's 

"metabolic risk profile" as new 

laboratory, wearable, or lifestyle data 

emerge, prompting proactive 

engagement by doctors and public 

health teams. Furthermore, 

counterfactual explanations offer 

personalized “what-if” scenarios 

that emphasize alterable risk 

factors—such as weight loss or 

enhanced physical activity—

congruent with behavior-change 

frameworks like the Health Belief 

Model and COM-B (Capability–

Opportunity–Motivation–Behavior). 

The confluence of AI explainability, 

behavioral science, and health policy 

enhances predictive modeling, 

making it a potent instrument for 

precision prevention and data-

driven public health initiatives [26]. 

5.4. Ethical, Legal, and Governance 

Considerations 

Federated learning 

markedly diminishes the risks linked 

to centralized data storage; however, 

persistent vulnerabilities such as 

gradient leakage and model 

inversion highlight the necessity for 

sophisticated privacy-preserving 

mechanisms, including differential 

privacy, secure aggregation, and 

homomorphic encryption, before 

practical implementation. This study 

demonstrated that the use of 

minimal Gaussian noise (σ = 0.01) 

achieved a satisfactory equilibrium 

between privacy and model 

accuracy, however systems at 

production scale may require more 

robust safeguards. Ensuring justice 

and equity is crucial, as AI systems 

may unintentionally exacerbate 

health inequities if minority 

populations are inadequately 

represented in training datasets. The 

framework improves fairness and 

model interpretability by integrating 

socioeconomic and demographic 

variables, serving as a covariate 

adjustment mechanism; subgroup 

analyses indicated consistent AUC 

performance across race, income, 

and gender categories (ΔAUC ≤ 

0.01), implying negligible bias—

however, ongoing fairness auditing 

is crucial. The incorporation of 

explainability tools conforms to 

international ethical AI standards 

established by the WHO (2023) and 

the U.S. National Academy of 

Medicine, allowing doctors to 

elucidate the logic behind each 

prediction, enhance accountability, 

and maintain compliance with FDA 

AI/ML regulations. The framework 

encapsulates the ideas of ethical AI 

for the public good by advocating 

data altruism—utilizing health data 

to enhance social welfare while 

protecting individual rights. When 

integrated into national health 

monitoring systems, it provides a 

transparent, equitable, and privacy-

respecting framework for AI-driven 

disease prevention and precision 

public health. 

5.5. Limitations 

Although the findings of this 

study are promising, numerous 

limitations must be recognized to 

maintain transparency and inform 
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future research. Cohort 

representativeness presents a 

limitation, as the dataset—despite 

containing over 200,000 records—

originated from three U.S. regions, 

which may restrict global 

generalizability; external validation 

with international biobanks like the 

UK Biobank or All of Us would 

enhance the framework's relevance 

across varied populations. Secondly, 

variability in data quality persists as 

a barrier, especially as self-reported 

lifestyle measures may introduce 

recall bias; integrating structured 

data from wearables or mobile 

sensors could enhance dependability 

and temporal resolution. The 

framework’s predictive models 

identify associative rather than 

causal linkages, highlighting the 

necessity of incorporating causal 

inference methods, such as structural 

causal graphs, to improve 

interpretative robustness and 

facilitate evidence-based 

interventions. The temporal 

generalization is constrained by the 

two-year prediction window, 

potentially neglecting long-term 

disease trajectories; future 

modifications utilizing recurrent or 

Transformer-based architectures 

may more effectively characterize 

changing risk patterns. Ultimately, 

the computational expenses linked 

to federated learning present 

scalability issues, as communication 

overhead escalates with an 

increasing number of participating 

nodes. Identifying these constraints 

not only bolsters the study's 

credibility but also offers a 

framework for improving the 

model's scalability, interpretability, 

and global application in future 

research. 

5.6. Future Research Directions 

Future research avenues 

arise to augment and broaden the 

suggested Explainable AI 

framework for precision public 

health. One approach is the 

advancement of federated temporal 

modeling through the integration of 

time-series deep learning 

architectures, such as Federated 

LSTM (FL-LSTM) or Transformer 

networks, to accurately represent the 

temporal evolution of metabolic 

illnesses. Improvements in privacy-

enhancing technology, such as 

differential privacy and blockchain-

based audit trails, can enhance data 

governance, transparency, and user 

trust in decentralized health 

systems. To enhance interpretability, 

subsequent research should 

investigate explainability beyond 

SHAP by integrating causal 

discovery techniques, attention-

based visualizations, and more 

profound counterfactual reasoning 

for nuanced, comprehensible 

explanations. Furthermore, the 

system may be integrated with 

personalized digital twins, 

facilitating ongoing, real-time 

modeling and observation of 

individual metabolic health 

trajectories for precise intervention 

[27]. Incorporating AI-generated risk 

measures into agent-based 

epidemiological models at the 

population level could allow 

policymakers to simulate 

intervention results and enhance 

resource distribution. These 

initiatives collectively aim to 

establish a nationwide AI-driven 

precision public health 

infrastructure, utilizing predictive 

analytics and explainable 

intelligence to foster equitable, 

proactive, and data-informed 

disease preventive efforts. 

6. CONCLUSION 

This study presents a thorough, 

interpretable, federated, and multi-modal AI 

framework for the early identification of Type 
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2 Diabetes and associated metabolic 

problems. By amalgamating clinical, genetic, 

behavioral, and socioeconomic data, the 

model attains superior predictive 

performance (AUC = 0.93) and interpretability 

while preserving privacy. Federated training 

demonstrates that collaboration between 

institutions is feasible within data protection 

limitations. 

The incorporation of explainability 

(SHAP and counterfactuals) converts 

algorithmic results into actionable 

intelligence, allowing doctors and 

policymakers to identify at-risk individuals, 

devise customized therapies, and enhance 

resource allocation. The framework 

implements the concept of Precision Public 

Health, broadening the precision-medicine 

philosophy from healthcare facilities to 

communities. 

This study emphasizes that ethical, 

transparent, and federated AI can promote 

public health equity while safeguarding 

privacy. As global healthcare systems 

transition to preventive and personalized 

models, explainable AI will be essential in 

connecting scientific progress with public 

trust.
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