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 Cloud platforms constitute the operational substrate for modern digital 

enterprises, yet their internal health telemetry remains intrinsically 

opaque, delayed, and non-deterministic from the perspective of tenant-

facing reliability engineering. Despite the extensive instrumentation 

available within Microsoft Azure—including Service Health 

advisories, Resource Health telemetry, and platform diagnostic 

exports—empirical evidence continually demonstrates structural 

limitations that impede timely identification of regional instabilities, 

control-plane disruptions, propagation inconsistencies, and multi-

service correlated failures. These limitations introduce latency between 

fault inception and observable acknowledgement, creating blind spots 

that severely constrain operational response windows for high-

availability systems. This paper presents a novel Unified Multi-Signal 

Correlation Architecture (UMSCA) designed to overcome inherent 

deficiencies in provider-sourced telemetry by constructing a proactive, 

cross-signal, time-aligned reliability intelligence layer. The proposed 

framework integrates four heterogeneous data modalities—Azure 

Service Health, Azure Resource Health, Event Hub–streamed 

diagnostic telemetry, and distributed synthetic endpoint 

instrumentation—and fuses them using (i) canonical semantic 

normalization, (ii) probabilistic temporal alignment, (iii) inter-signal 

divergence detection, and (iv) multi-source reliability inference 

models. A large-scale enterprise simulation comprising 40 

subscriptions, 18 geo-diverse Azure regions, 1,200 heterogeneous 

cloud resources, and over 3.2M telemetry events demonstrates that 

UMSCA reduces Mean Time to Detect (MTTD) by 88%, improves 

multi-signal correlation accuracy to 92%, lowers false-positive 

escalation by 52%, and estimates cross-region blast radius with up to 

93% accuracy. 
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1. INTRODUCTION 
1.1 Cloud Reliability as a First-Class 

Engineering Discipline 

Cloud computing has emerged 

as the de facto operational backbone of 

digital enterprises, powering mission-

critical applications across global 

regions, multi-subscription 

environments, and heterogeneous 

compute topologies. As organizations 
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adopt cloud-native patterns—ephemeral 

workloads, autoscaling, decentralized 

microservices, managed databases, and 

service-mesh-mediated communication 

the complexity and opacity of the 

underlying control-plane increase 

correspondingly [1]. Unlike traditional 

on-prem systems, cloud tenants lack 

direct visibility into internal platform 

signaling. Consequently, reliability 

engineering in the cloud is 

fundamentally characterized by indirect 

inference, telemetry interpretation, and 

multi-signal triangulation rather than 

direct system introspection. 

1.2 Inherent Limitations of Provider-Based 

Telemetry 

Azure exposes two primary 

health subsystems: 

1) Service Health, which 

announces platform-level 

incidents. 

2) Resource Health, which emits 

per-resource availability 

transitions. 

However, both subsystems 

exhibit structural constraints: 

1) Notification latency, stemming 

from internal triage and 

communication pipelines. 

2) Non-uniform propagation 

across tenants, subscriptions, 

and regions. 

3) Asynchronous independence 

between Service Health and 

Resource Health. 

4) Silence during transient or 

partial failures, especially in the 

control-plane. 

5) Lack of cross-signal causality, 

preventing inference of 

distributed effects. 

The result is a temporal 

misalignment between real degradation 

and official acknowledgement. Empirical 

studies confirm that provider signals 

often lag by minutes to tens of minutes, 

rendering them inadequate for high-

frequency operational decision-making 

in SRE contexts. 

 

 

1.3 Divergence Between Observed and 

Reported Cloud Behavior 

Enterprise environments often 

detect: 

1) Synthetic endpoint failures 

2) Elevated latency patterns 

3) DNS resolution anomalies 

4) Timeouts from distributed 

components 

Long before any Azure incident 

becomes visible. Additionally, exported 

diagnostics via Event Hub exhibit: 

1) Partition-level skew 

2) Consumer-group divergence 

3) Unpredictable schema variance 

4) Partial loss under high 

throughput 

Thus, telemetry divergence is 

not anomalous; it is structural and 

expected. 

The core problem is not 

insufficient data—but uncoordinated, 

asynchronous, semantically inconsistent 

data lacking a unifying inference layer. 

1.4 Research Problem and Objectives 

The central research question 

addressed in this work is: 

How can enterprises proactively 

detect Azure outages by correlating 

heterogeneous and asynchronous cloud 

telemetry sources without depending on 

provider acknowledgement? 

To answer this, the paper 

advances five technical contributions [2]: 

1) A canonical metadata model that 

unifies Service Health, Resource 

Health, Event Hub telemetry, 

and synthetic instrumentation. 

2) A probabilistic temporal-

alignment model for 

synchronizing asynchronous 

health signals. 

3) A divergence-detection 

framework identifying provider-

lag, consumer-group skew, and 

control-plane inconsistencies. 

4) A multi-signal inference engine 

estimating reliability, outage 

likelihood, and blast radius. 



The Eastasouth Journal of Information System and Computer Science (ESISCS)       

 

Vol. 3, No. 02, December 2025, pp. 191-201 

 

193 

5) A large-scale empirical 

evaluation demonstrating 

superior accuracy, 

responsiveness, and consistency. 

1.5 Structure of the Paper 

Section II presents a detailed 

literature review. 

Section III formalizes the UMSCA 

architecture and algorithms. 

Section IV reports experimental results. 

Section V discusses implications and 

limitations. 

Section VI concludes, and Section VII 

identifies future directions. 

 

2. LITERATURE REVIEW 
2.1 Provider Health Systems and Incident 

Notification Models 

Research on hyperscale cloud 

reliability highlights systemic challenges 

in provider-based incident transparency. 

Azure and AWS rely on internal anomaly 

detectors, human validation, and staged 

communication workflows. Studies [3], 

[4] identify intrinsic delays in health 

dashboards due to safety, accuracy, and 

compliance constraints. These systems 

are not optimized for low-latency 

detection but for post-validation 

broadcast reliability. 

2.2 Azure Service Health: Communication 

Constraints 

Azure Service Health is 

fundamentally a communication layer, 

not a detection mechanism. Literature 

notes: 

1) Multi-stage validation pipelines 

2) Internal approval workflows 

3) Conservative publication 

thresholds 

4) Partial visibility for regionally-

scoped incidents 

Its intended role is tenant 

communication—not early detection—

making it unsuitable as a sole reliability 

signal. 

2.3 Azure Resource Health: Granularity 

Without Correlation 

Resource Health provides 

granular resource-specific availability 

but lacks: 

1) Global awareness 

2) Cross-resource clustering 

3) Dependency mapping 

4) Temporal coherence with service 

health 

Academic evaluations show 

inconsistent timing during widespread 

control-plane disruptions, confirming its 

limitations as a primary outage signal. 

2.4 Event Hub as a Diagnostic Transport 

Layer 

Event Hub has strong 

throughput guarantees but weak 

semantic guarantees. Known limitations 

include: 

1) Non-deterministic ordering 

2) Consumer-group dependency 

3) Message loss during 

backpressure 

4) Schema drift depending on log 

types 

Thus, Event Hub is a carrier of health 

data—not an authoritative source. 

2.5 Multi-Modal Observability Correlation 

Existing observability platforms 

emphasize logs, metrics, and traces, but 

literature rarely addresses provider 

telemetry correlation. Cross-modal 

alignment [5] demonstrates that 

outperforming siloed signals requires: 

1) Semantic normalization 

2) Temporal alignment 

3) Dependency graph modeling 

4) Multi-signal inference models 

This aligns precisely with the motivation 

of UMSCA. 

2.6 Synthetic Monitoring and Externally 

Observed Failures 

Synthetic instrumentation 

provides user-layer ground truth, 

independent of cloud internal signals. 

However, it cannot detect internal 

control-plane failures lacking external 

manifestation. Hence, synthetic data is 

necessary but not sufficient—a core 

premise of this work. 

2.7 Multi-Region and Multi-Subscription 

Outage Effects 

Enterprise-scale cloud footprints 

introduce combinatorial propagation 

paths during outages. Prior studies [6] 
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show cross-region impacts even when 

provider dashboards display no active 

incidents. This reinforces the need for 

multi-source inference models for 

reliable situational awareness. 

2.8 Summary of Research Gaps 

The literature consistently lacks: 

1) Unified models combining 

Service Health, Resource Health, 

Event Hub telemetry, and 

synthetic probes 

2) Divergence detection 

frameworks 

3) Probabilistic temporal alignment 

4) Reliability scoring derived from 

heterogeneous cloud signals 

5) Enterprise-scale evaluation 

integrating all signal types 

UMSCA uniquely addresses all 

these gaps. 

 

3. METHODOLOGY 

The Unified Multi-Signal Correlation 

Architecture (UMSCA) is designed as an 

extensible, provider-neutral, inference-driven 

reliability intelligence layer that synthesizes 

heterogeneous cloud health signals into 

coherent, high-fidelity outage awareness. This 

section formalizes the architecture, 

canonicalization model, temporal alignment 

logic, divergence inference algorithms, and 

reliability scoring functions. The 

methodology emphasizes reproducibility, 

mathematical rigor, and enterprise-scale 

operational applicability. 

3.1 Architectural Overview 

UMSCA comprises five 

interdependent subsystems, shown 

conceptually as a layered inference 

pipeline: 

1) Multi-Source Telemetry 

Acquisition Layer 

2) Semantic Canonicalization & 

Metadata Unification Layer 

3) Probabilistic Temporal 

Alignment Engine 

4) Divergence Detection & Multi-

Modal Inference Layer 

5) Reliability Estimation & Blast-

Radius Modeling Layer 

Each subsystem is 

independently modular, enabling 

incremental adoption or cross-cloud 

extensibility. 

3.2 Telemetry Acquisition Layer 

a. Azure Service Health Stream 

A periodic collector 

retrieves incident metadata via 

Azure’s REST APIs, applying a 

minimum polling interval 

Δt=30–60 seconds\Delta t = 

30\text{–}60 \text{ 

seconds}Δt=30–60 seconds. Each 

event includes: 

1) Industry classification 

2) Service family 

3) Impacted regions 

4) Severity and outage 

scope 

5) First seen / last updated 

timestamps 

Service Health furnishes 

high-level intent signals rather 

than instantaneous fault 

detection. 

b. Azure Resource Health Stream 

Resource Health events 

are acquired directly from ARM 

(Azure Resource Manager). Each 

state transition r→r′r 

\rightarrow r'r→r′ is recorded 

with: 

1) Resource ID 

2) Provider type 

3) Transition timestamp 

4) Degradation metadata 

5) Impact reason codes 

(where available) 

Unlike Service Health, 

Resource Health operates at fine 

granularity but lacks global 

situational awareness. 

c. Event Hub Diagnostic Stream 

Event Hub streams carry 

diagnostic and operational 

events exported from Azure 

Monitor. However, its 

distributed partitioned 

architecture induces: 
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1) Partition skew 

2) Consumer-group 

dependent visibility 

3) Non-deterministic event 

arrival 

4) Potential backpressure-

induced message loss 

UMSCA treats Event Hub 

telemetry as probabilistically 

incomplete. 

To model ingestion reliability, 

we define: 

γ=NreceivedNexpected∈[0,1]\g

amma = 

\frac{N_\text{received}}{N_\te

xt{expected}} \in 

[0,1]γ=NexpectedNreceived∈[0,

1]  

Where: 

1) NexpectedN_\text{expe

cted}Nexpected = 

estimated events based 

on provisioning rate 

2) NreceivedN_\text{recei

ved}Nreceived = events 

retrieved by consumers 

A drop in γ\gammaγ indicates 

ingestion divergence. 

d. Synthetic Endpoint Telemetry 

Distributed synthetic probes 

include: 

1) DNS resolution latency 

2) TCP connect time 

3) TLS handshake time 

4) HTTP(S) availability & 

latency 

5) Application-level SLA 

measurements 

(optional) 

Synthetic 

instrumentation yields tenant-

observable ground truth, 

independent of Azure’s internal 

systems. 

To quantify probe anomalies, 

UMSCA computes z-score 

deviations: 

zi=xi−μσz_i = \frac{x_i - 

\mu}{\sigma}zi=σxi−μ  

Where xix_ixi is the probe metric 

and (μ,σ)(\mu, \sigma)(μ,σ) are 

historical baselines. 

3.3 Semantic Canonicalization 

Cloud telemetry sources are 

semantically inconsistent. UMSCA 

employs a canonical metadata model to 

unify attributes across sources. 

a. Entity Normalization 

Each event is 

transformed into a normalized 

tuple: 

e={t,r,s,θ,ϕ,ρ}e = \{t, r, s, \theta, 

\phi, \rho\}e={t,r,s,θ,ϕ,ρ}  

Where: 

1) ttt: event timestamp 

2) rrr: region 

3) sss: resource/service 

identifier 

4) θ\thetaθ: severity 

vector 

5) ϕ\phiϕ: signal type 

(SH, RH, EH, SYN) 

6) ρ\rhoρ: metadata fields 

(hash map) 

UMSCA resolves 

naming mismatches using string 

similarity + region ontology 

mapping. 

b. Dependency Graph Enrichment 

A multi-layer service 

dependency graph G=(V,E)G = 

(V,E)G=(V,E) is constructed, 

where: 

1) VVV = cloud resources + 

platform services 

2) EEE = operational, 

network, identity, or 

orchestration 

dependencies 

For each event, UMSCA 

enriches metadata with 

upstream/downstream 

dependencies. This enables 

inferential blast-radius 

detection. 

3.4 Probabilistic Temporal Alignment 

Engine 

Different telemetry streams 

operate with distinct latencies; thus, 

naive timestamp comparison yields false 
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divergence. UMSCA introduces a 

probabilistic temporal model built on: 

 

1) Sliding temporal windows 

2) Out-of-order event 

compensation 

3) Signal-specific latency priors 

Each event’s “true occurrence 

time” is estimated as: 

T∗=Tobserved−λϕT^\ast = 

T_\text{observed} - 

\lambda_\phiT∗=Tobserved−λϕ  

Where: 

λϕ\lambda_\phiλϕ = expected latency 

for signal type ϕ\phiϕ 

Empirically derived priors (example 

values): 

1) Service Health λSH≈60–

200s\lambda_{SH} \approx 60–

200sλSH≈60–200s 

2) Resource Health λRH≈20–

90s\lambda_{RH} \approx 20–

90sλRH≈20–90s 

3) Event Hub λEH≈5–

30s\lambda_{EH} \approx 5–

30sλEH≈5–30s 

4) Synthetic λSYN≈0–

5s\lambda_{SYN} \approx 0–

5sλSYN≈0–5s 

A Bayesian smoothing filter 

refines timestamps across signals: 

P(T∗∣T,ϕ)∝P(T∣T∗,ϕ)P(T∗)P(T^\ast|T,\p

hi) \propto P(T | T^\ast, \phi) 

P(T^\ast)P(T∗∣T,ϕ)∝P(T∣T∗,ϕ)P(T∗)  

This generates temporally coherent 

multi-signal event clusters. 

3.5 Divergence Detection Model 

UMSCA identifies four 

divergence types: 

1) Provider-Lag Divergence 

Occurs when synthetic or 

resource anomalies precede 

Service Health notification: 

DPL=(TSYN∗<TSH∗−δ)D_{PL} = 

(T_{SYN}^\ast < T_{SH}^\ast - 

\delta)DPL=(TSYN∗<TSH∗−δ)  

2) Resource-Lag Divergence 

Service Health acknowledges an 

outage without corresponding 

Resource Health degradation: 

DRL=(TSH∗<TRH∗−δ)D_{RL} = 

(T_{SH}^\ast < T_{RH}^\ast - 

\delta)DRL=(TSH∗<TRH∗−δ)  

3) Event Hub Ingestion Divergence 

Detected when ingestion 

reliability γ<τ\gamma < 

\tauγ<τ: 

DEH=(γ<0.85)D_{EH} = 

(\gamma < 0.85)DEH=(γ<0.85)  

4) Synthetic-Only Divergence 

Synthetic probes detect 

anomalies when all Azure 

signals appear normal. This 

indicates path-, DNS-, or CDN-

level failures. 

UMSCA computes divergence 

probability: 

P(Dk∣E)=σ(Wk⋅f(E))P(D_k|E) = 

\sigma(W_k \cdot 

f(E))P(Dk∣E)=σ(Wk⋅f(E))  

Where: 

a. f(E)f(E)f(E) = extracted 

feature vector 

b. WkW_kWk = 

divergence classifier 

weights 

c. σ\sigmaσ = logistic 

function 

3.6 Reliability Estimation Model 

The final reliability score 

R∈[0,100]R \in [0,100]R∈[0,100] 

integrates all normalized signals: 

R=100−(w1ASH+w2ARH+w3AEH+w4A

SYN+w5∑kDk)R = 100 - \left( w_1 

A_{SH} + w_2 A_{RH} + w_3 A_{EH} + 

w_4 A_{SYN} + w_5 \sum_k D_k 

\right)R=100−(w1ASH+w2ARH+w3AE

H+w4ASYN+w5k∑Dk)  

Where: 

1) ASH,ARHA_{SH}, 

A_{RH}ASH,ARH: anomaly 

scores 

2) AEHA_{EH}AEH: ingestion 

anomaly score 

3) ASYNA_{SYN}ASYN: synthetic 

anomaly score 

4) DkD_kDk: divergence penalties 

5) wiw_iwi: weights learned via 

cross-validation 
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3.7 Blast-Radius Inference 

Given a cluster of correlated 

events CCC, we infer blast radius: 

BR={ri∈Regions∣P(Impact(ri)∣C)>η}BR = 

\{ r_i \in \text{Regions} \mid 

P(\text{Impact}(r_i)|C) > \eta 

\}BR={ri∈Regions∣P(Impact(ri)∣C)>η}  

UMSCA estimates: 

1) number of impacted regions 

2) affected subscriptions 

3) degraded services 

4) inferred propagation paths 

This supports cross-subscription 

enterprise operations. 

 

4. RESULTS AND DISCUSSION 

A 30-day evaluation was conducted 

to measure UMSCA’s performance across 

accuracy, timeliness, correlation fidelity, 

divergence detection, and operational 

relevance. 

4.1 Results 

a. Experimental Design 

Environment 

1) 40 Azure subscriptions 

2) 18 regions (Americas, 

EMEA, APAC) 

3) 1,200 heterogeneous 

resources 

4) 15 service families 

5) 3.2 million health and 

diagnostic events 

Injected Failure Scenarios 

1) Regional fabric 

instability 

2) DNS propagation 

degradation 

3) Control-plane throttling 

4) Resource Health 

propagation lag 

5) Synthetic-only network 

path failures 

6) Event Hub ingestion 

backpressure 

Ground Truth Construction 

Each injected failure had 

manually defined: 

1) onset timestamp 

2) affected services 

3) propagation behavior 

4) expected anomaly 

profile 

b. Mean Time to Detect (MTTD) 

Table 1. Mean Time to Detect (MTTD) Across Detection Sources

Detection Source MTTD (s) Improvement vs Baseline 

Azure Service Health 427 – 

Azure Resource Health 311 – 

Synthetic Monitoring 181 – 

UMSCA (Proposed Model) 52 +88% vs SH / +72% vs SYN 

UMSCA’s low MTTD 

reflects tight temporal alignment 

and multi-signal inference, 

outperforming all single-source 

baselines. 

c. Multi-Signal Correlation 

Fidelity 

Table 2. Model Performance on Multi-Signal Fidelity (Precision, Recall, F1)

Model Precision Recall F1 

SH Only 0.43 0.38 0.40 

RH Only 0.49 0.51 0.50 

SYN Only 0.61 0.72 0.66 

UMSCA 0.92 0.88 0.90 

UMSCA achieves near 

state-of-the-art correlation, 

enabled by probabilistic 

alignment and robust 

canonicalization. 
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d. Divergence Detection Accuracy 

Table 3. Divergence Detection Accuracy Across Divergence Types

Divergence Type Precision Recall F1 Score 

Provider-Lag 0.93 0.91 0.92 

Resource-Lag 0.89 0.86 0.87 

Event Hub Divergence 0.84 0.81 0.82 

Synthetic-Only Divergence 0.78 0.76 0.77 

UMSCA captures 

temporal inconsistencies with 

high fidelity — especially 

Provider-Lag, the most 

operationally critical case. 

e. Ingestion Reliability 

Evaluation 

Diagnostics: 

1) Missing message 

detection: 86% accuracy 

2) Consumer-group skew 

detection: 91% accuracy 

3) Schema anomaly 

detection: 82% accuracy 

Correlation reduces post-

alignment ambiguity to 4%, 

compared to 14–19% in Event 

Hub–only systems. 

f. Synthetic Early Detection 

Advantage 

Synthetic probes 

detected observable anomalies 

5m 41s before Azure 

acknowledgements on average. 

UMSCA integrates these signals 

for early, validated detection. 

g. Blast-Radius Estimation 

Performance 

Table 4. Blast-Radius Impact Estimation Performance

Impact Level Accuracy 

Single Region 93% 

Multi-Region 81% 

Subscription-Level 90% 

The dependency graph 

and probabilistic clustering 

enhance cross-region inference. 

h. Reliability Score Validation 

Pearson correlation 

between UMSCA’s reliability 

score and ground-truth health: 

1) 0.94 (resource-level) 

2) 0.91 (region-level) 

3) 0.95 (service-level) 

Indicating that the score 

is a strong surrogate metric for 

real operational state. 

4.2 Discussion 

The empirical results 

demonstrate that the Unified Multi-

Signal Correlation Architecture 

(UMSCA) materially advances the state 

of cloud reliability engineering by 

enabling proactive, provider-

independent outage detection across 

heterogeneous Azure environments. 

This section contextualizes the findings, 

situates them relative to existing industry 

and academic work, articulates inherent 

limitations, and outlines operational 

implications. 

a. Implications for Cloud 

Reliability Engineering 

UMSCA’s performance 

illustrates that reliability 

intelligence must extend beyond 

provider-issued telemetry, 

which is fundamentally 

constrained by internal 

communication pipelines and 

validation workflows. The 

ability to infer outages prior to 

formal acknowledgement has 

profound implications for: 

1) SRE incident command 

models 

2) Failover and routing 

automation 
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3) Enterprise change-

management processes 

4) Service-level objective 

(SLO) adherence 

5) High-availability 

architectures in 

regulated domains 

By providing earlier 

situational awareness, UMSCA 

effectively increases the 

available “reaction window” 

between event onset and 

customer-visible impact, a 

critical differentiator for large-

scale cloud operations. 

b. The Necessity of Multi-Modal 

Fusion 

Each telemetry source—

Service Health, Resource Health, 

Event Hub, synthetic probes—

exhibits inherent structural 

limitations. UMSCA 

demonstrates that these 

limitations are not merely 

inconvenient but systemic: 

1) Service Health is 

accurate but delayed. 

2) Resource Health is 

granular but incomplete 

during platform-scale 

degradation. 

3) Event Hub is high-

throughput but 

semantically unreliable. 

4) Synthetic signals are 

early but ambiguous 

without corroboration. 

Thus, no single source 

provides sufficiently reliable 

information for enterprise-grade 

outage detection. The fusion of 

signals, augmented with 

probabilistic modeling and 

divergence analytics, yields a 

materially improved 

representation of cloud health. 

c. Temporal Coherence as a 

Fundamental Challenge 

A key insight is that time 

inconsistency is the principal 

source of unreliability in cloud 

health telemetry. Azure 

subsystems operate with distinct 

latency profiles, validation 

paths, update cycles, and 

propagation patterns. As a 

result, relying on timestamps at 

face value inherently 

misrepresents event causality. 

UMSCA’s temporal-

alignment model effectively 

restores coherence by correcting 

observed timestamps to their 

probable occurrence times, 

accounting for: 

1) Event-source latency 

distributions 

2) Out-of-order arrivals 

3) Ingestion delays 

4) Provider-level 

communication delays 

This directly improves 

anomaly classification, 

correlation fidelity, and root-

cause inference. 

d. Divergence as a First-Class 

Reliability Indicator 

Traditional monitoring 

frameworks treat divergence 

(mismatched signals) as noise. 

This work demonstrates that 

divergence is not noise—it is 

information: 

1) Provider-lag indicates 

control-plane or 

communication pipeline 

delays. 

2) Resource-lag indicates 

partial outages or 

control-plane 

propagation 

inconsistencies. 

3) Synthetic-only 

anomalies indicate path 

dependence or external 

degradation. 

4) Event Hub divergence 

reveals ingestion issues. 

UMSCA reframes 

divergence as a first-class 

operational signal, central to 

accurate outage detection. 
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e. Enterprise-Scale Operational 

Value 

For multi-subscription 

Azure environments, UMSCA: 

1) Provides uniform 

outage detection across 

diverse workloads 

2) Illuminates hidden 

propagation patterns 

3) Supports coordinated 

cross-team incident 

response 

4) Enables automated 

routing or cluster 

failover 

5) De-risks regulatory 

workloads requiring 

high availability 

6) Improves auditability 

and post-incident RCA 

quality 

The architecture is 

especially potent for enterprises 

with global presence, 

heterogeneous workloads, and 

strict uptime constraints. 

f. Limitations 

Despite its strengths, 

UMSCA has inherent 

limitations: 

1) Dependence on 

Observable Signals 

Internal Azure failures 

with no externally 

observable effects 

cannot be detected. 

2) Event Hub Sampling 

Incompleteness 

Extreme ingestion loss 

may limit RL/EH 

divergence inference 

accuracy. 

3) Synthetic Probe 

Coverage 

Geographic under-

provisioning of 

synthetic probes may 

reduce early detection 

reliability. 

4) Cross-Cloud 

Generalization 

While designed to be 

cloud-agnostic, 

adaptation to AWS, 

GCP, or OCI requires 

additional canonical 

mappings. 

5) Absence of Full Root-

Cause Analysis 

UMSCA infers outage 

likelihood, not 

underlying code or infra 

defects within Azure. 

These limitations 

represent opportunities for 

future expansion rather than 

fundamental flaws in the 

architecture. 

 

5. CONCLUSION 

This work introduced the Unified 

Multi-Signal Correlation Architecture 

(UMSCA)—a provider-independent, 

inference-driven reliability framework that 

synthesizes heterogeneous Azure health 

telemetry to deliver proactive outage 

detection. By integrating Service Health 

advisories, Resource Health signals, Event 

Hub–exported diagnostics, and synthetic 

endpoint instrumentation, UMSCA corrects 

structural deficiencies in provider telemetry, 

enabling earlier detection, higher correlation 

accuracy, and reliable blast-radius inference. 

The architecture’s probabilistic 

temporal alignment model, divergence 

detection engine, canonicalization 

framework, and reliability scoring 

mechanism collectively outperform existing 

approaches. Across a 30-day enterprise-scale 

simulation involving 3.2 million events, 

UMSCA reduced Mean Time to Detect 

(MTTD) by 88%, improved correlation fidelity 

to 92%, and achieved near state-of-the-art 

performance in divergence detection and 

multi-region impact modeling. 

UMSCA advances the state of cloud 

reliability engineering by demonstrating that 

multi-signal fusion is essential for accurate, 

timely outage detection in hyperscale cloud 

environments. It provides a foundation for 

future research in autonomous cloud 
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resilience, cross-cloud reliability intelligence, 

and predictive outage modeling. 

Future Work 

Future research will explore several 

avenues for enhancing UMSCA [7]: 

a. Multi-Cloud Extension 

Generalizing canonical models to 

AWS, GCP, and OCI, enabling 

unified outage intelligence across 

providers. 

b. Application Telemetry Integration 

Augmenting cloud health signals 

with distributed traces, latency 

histograms, and microservice 

dependency graphs. 

c. Machine Learning–Driven Prediction 

Developing sequence-based models 

(LSTM, Transformer) to predict 

outages before observable 

degradation. 

d. Reinforcement Learning for 

Automated Remediation 

Training RL agents to trigger routing 

changes, DNS failovers, and 

workload shifts. 

e. Incorporating Internet-Path 

Telemetry 

Adding BGP data, traceroutes, and 

CDN routing metadata to detect 

global routing failures. 

f. High-Fidelity Outage Simulation 

Framework 

Developing synthetic incident 

generators to model rare and 

compound failure scenarios. 

g. Enhanced Blast-Radius Mapping 

Leveraging graph neural networks 

(GNNs) for more accurate cross-

region propagation inference. 

h. Causal Graph Modeling 

Applying causal inference and do-

calculus to distinguish correlated vs 

causal degradation. 

These enhancements would further 

establish UMSCA as a foundational 

technology for next-generation cloud 

resilience.
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