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Cloud platforms constitute the operational substrate for modern digital
enterprises, yet their internal health telemetry remains intrinsically
opaque, delayed, and non-deterministic from the perspective of tenant-
facing reliability engineering. Despite the extensive instrumentation
available within Microsoft Azure—including Service Health
advisories, Resource Health telemetry, and platform diagnostic
exports—empirical evidence continually demonstrates structural
limitations that impede timely identification of regional instabilities,
control-plane disruptions, propagation inconsistencies, and multi-
service correlated failures. These limitations introduce latency between
fault inception and observable acknowledgement, creating blind spots
that severely constrain operational response windows for high-
availability systems. This paper presents a novel Unified Multi-Signal
Correlation Architecture (UMSCA) designed to overcome inherent
deficiencies in provider-sourced telemetry by constructing a proactive,
cross-signal, time-aligned reliability intelligence layer. The proposed
framework integrates four heterogeneous data modalities —Azure
Service Health, Azure Resource Health, Event Hub-streamed
diagnostic  telemetry, and distributed synthetic endpoint
instrumentation—and fuses them using (i) canonical semantic
normalization, (ii) probabilistic temporal alignment, (iii) inter-signal
divergence detection, and (iv) multi-source reliability inference
models. A large-scale enterprise simulation comprising 40
subscriptions, 18 geo-diverse Azure regions, 1,200 heterogeneous
cloud resources, and over 3.2M telemetry events demonstrates that
UMSCA reduces Mean Time to Detect (MTTD) by 88%, improves
multi-signal correlation accuracy to 92%, lowers false-positive
escalation by 52%, and estimates cross-region blast radius with up to
93% accuracy.
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1. INTRODUCTION

1.1 Cloud Reliability as a First-Class

Engineering Discipline

Cloud computing has emerged
as the de facto operational backbone of

digital enterprises, powering mission-
critical ~ applications across global
regions, multi-subscription
environments, and  heterogeneous
compute topologies. As organizations
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1.2

adopt cloud-native patterns—ephemeral
workloads, autoscaling, decentralized
microservices, managed databases, and
service-mesh-mediated communication
the complexity and opacity of the
underlying  control-plane  increase
correspondingly [1]. Unlike traditional
on-prem systems, cloud tenants lack
direct visibility into internal platform
Consequently,  reliability
engineering in  the cloud s
fundamentally characterized by indirect
inference, telemetry interpretation, and
multi-signal triangulation rather than
direct system introspection.
Inherent Limitations of Provider-Based
Telemetry

Azure exposes
health subsystems:

signaling.

two primary

1) Service Health, which
announces platform-level
incidents.

2) Resource Health, which emits
per-resource availability
transitions.

However, both subsystems

exhibit structural constraints:
1) Notification latency, stemming
from internal triage and
communication pipelines.

2) Non-uniform propagation
across tenants, subscriptions,
and regions.

3) Asynchronous independence

between Service Health and
Resource Health.

4) Silence during transient or
partial failures, especially in the
control-plane.

5) Lack of cross-signal causality,
preventing inference of
distributed effects.
The result is a temporal

misalignment between real degradation
and official acknowledgement. Empirical
studies confirm that provider signals
often lag by minutes to tens of minutes,
rendering them inadequate for high-
frequency operational decision-making
in SRE contexts.

1.3

1.4

Divergence Between Observed and
Reported Cloud Behavior
Enterprise environments often
detect:
1) Synthetic endpoint failures
2) Elevated latency patterns
3) DNS resolution anomalies
4) Timeouts from  distributed
components
Long before any Azure incident
becomes visible. Additionally, exported
diagnostics via Event Hub exhibit:
1) Partition-level skew
2) Consumer-group divergence
3) Unpredictable schema variance
4) Partial  loss high
throughput
Thus, telemetry divergence is

under

not anomalous; it is structural and
expected.

The core problem 1is not
insufficient data—but uncoordinated,
asynchronous, semantically inconsistent
data lacking a unifying inference layer.
Research Problem and Objectives

The central research question
addressed in this work is:

How can enterprises proactively
detect Azure outages by correlating
heterogeneous and asynchronous cloud
telemetry sources without depending on
provider acknowledgement?

To answer this, the paper
advances five technical contributions [2]:

1) A canonical metadata model that
unifies Service Health, Resource

Health, Event Hub telemetry,

and synthetic instrumentation.

2) A  probabilistic ~ temporal-
alignment model for
synchronizing  asynchronous
health signals.

3) A divergence-detection

framework identifying provider-
lag, consumer-group skew, and
control-plane inconsistencies.

4) A multi-signal inference engine
estimating reliability, outage
likelihood, and blast radius.
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1.5

2.1

2.2

2.3

5 A large-scale empirical
evaluation demonstrating
superior accuracy,

responsiveness, and consistency.
Structure of the Paper

Section II presents a detailed
literature review.
Section III formalizes the
architecture and algorithms.
Section IV reports experimental results.

UMSCA

Section V discusses implications and
limitations.

Section VI concludes, and Section VII
identifies future directions.

2. LITERATURE REVIEW
Provider Health Systems and Incident
Notification Models
Research on hyperscale cloud
reliability highlights systemic challenges
in provider-based incident transparency.
Azure and AWS rely on internal anomaly
detectors, human validation, and staged
communication workflows. Studies [3],
[4] identify intrinsic delays in health
dashboards due to safety, accuracy, and
compliance constraints. These systems
are not optimized for low-latency
detection but for post-validation
broadcast reliability.
Azure Service Health: Communication
Constraints
Azure  Service Health is
fundamentally a communication layer,
not a detection mechanism. Literature
notes:
1) Multi-stage validation pipelines
2) Internal approval workflows
3) Conservative publication
thresholds
4) Partial visibility for regionally-
scoped incidents
Its intended role is tenant
communication—not early detection—
making it unsuitable as a sole reliability

signal.
Azure Resource Health: Granularity
Without Correlation

Resource  Health  provides

granular resource-specific availability
but lacks:

24

2.5

2.6

1) Global awareness
2) Cross-resource clustering
3) Dependency mapping
4) Temporal coherence with service
health
Academic evaluations show
inconsistent timing during widespread
control-plane disruptions, confirming its
limitations as a primary outage signal.
Event Hub as a Diagnostic Transport
Layer
Event Hub  has
throughput guarantees but
semantic guarantees. Known limitations
include:
1) Non-deterministic ordering
2) Consumer-group dependency

strong
weak

3) Message loss during
backpressure

4) Schema drift depending on log
types

Thus, Event Hub is a carrier of health
data—not an authoritative source.
Multi-Modal Observability Correlation
Existing observability platforms
emphasize logs, metrics, and traces, but

literature rarely addresses provider
telemetry  correlation.  Cross-modal
alignment [5] demonstrates that

outperforming siloed signals requires:

1) Semantic normalization

2) Temporal alignment

3) Dependency graph modeling

4) Multi-signal inference models
This aligns precisely with the motivation
of UMSCA.
Synthetic Monitoring and Externally
Observed Failures

Synthetic instrumentation

provides user-layer ground truth,
independent of cloud internal signals.
However, it cannot detect
control-plane failures lacking external
manifestation. Hence, synthetic data is
necessary but not sufficient—a core
premise of this work.

internal

2.7 Multi-Region and Multi-Subscription

Outage Effects
Enterprise-scale cloud footprints
introduce combinatorial propagation

paths during outages. Prior studies [6]
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show cross-region impacts even when
provider dashboards display no active
incidents. This reinforces the need for
multi-source inference models for
reliable situational awareness.
2.8 Summary of Research Gaps
The literature consistently lacks:
1) Unified models combining
Service Health, Resource Health,
Event Hub telemetry, and
synthetic probes
2) Divergence
frameworks
3) Probabilistic temporal alignment
4) Reliability scoring derived from
heterogeneous cloud signals
5) Enterprise-scale
integrating all signal types
UMSCA uniquely addresses all
these gaps.

detection

evaluation

3. METHODOLOGY

The Unified Multi-Signal Correlation
Architecture (UMSCA) is designed as an
extensible, provider-neutral, inference-driven
reliability intelligence layer that synthesizes
heterogeneous cloud health signals into
coherent, high-fidelity outage awareness. This
section formalizes the architecture,
canonicalization model, temporal alignment
logic, divergence inference algorithms, and
reliability
methodology emphasizes reproducibility,
mathematical rigor, and enterprise-scale
operational applicability.

3.1 Architectural Overview
UMSCA comprises five
interdependent  subsystems, shown
conceptually as a layered inference

pipeline:

1) Multi-Source

Acquisition Layer
2) Semantic Canonicalization &
Metadata Unification Layer

3) Probabilistic
Alignment Engine

4) Divergence Detection & Multi-
Modal Inference Layer

5) Reliability Estimation & Blast-
Radius Modeling Layer

scoring functions. The

Telemetry

Temporal

Each subsystem is
independently = modular,  enabling
incremental adoption or cross-cloud
extensibility.

3.2 Telemetry Acquisition Layer
a. Azure Service Health Stream
A periodic  collector
retrieves incident metadata via
Azure’s REST APIs, applying a
minimum  polling  interval
At=30-60 seconds\Delta t =
30\ text{-}60 \ text{
seconds}At=30-60 seconds. Each
event includes:
1) Industry classification
2) Service family
3) Impacted regions
4) Severity and outage
scope
5) First seen / last updated
timestamps
Service Health furnishes
high-level intent signals rather
than instantaneous fault
detection.
b. Azure Resource Health Stream
Resource Health events
are acquired directly from ARM
(Azure Resource Manager). Each

state transition r—r1'r
\rightarrow r'r—r’ is recorded
with:

1) Resource ID
2) Provider type
3) Transition timestamp
4) Degradation metadata
5) Impact reason codes
(where available)
Unlike Service Health,
Resource Health operates at fine
granularity but lacks global
situational awareness.
c¢. Event Hub Diagnostic Stream
Event Hub streams carry
diagnostic ~and  operational
events exported from Azure
Monitor.
distributed
architecture induces:

However, its
partitioned
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1) Partition skew

2) Consumer-group
dependent visibility

3) Non-deterministic event
arrival

4) Potential backpressure-
induced message loss

UMSCA treats Event Hub
telemetry as probabilistically
incomplete.

To model ingestion reliability,
we define:
v=NreceivedNexpected€[0,1]\ g
amma =
\frac{N_\text{received}}{N_\te
xt{expected}} \in
[0,1]y=NexpectedNreceived €[0,
1]

Where:

1) NexpectedN_\text{expe
cted}Nexpected =
estimated events based
on provisioning rate

2) NreceivedN_\ text{recei
ved}Nreceived = events
retrieved by consumers

A drop in y\gammay indicates
ingestion divergence.

Synthetic Endpoint Telemetry
Distributed synthetic probes
include:

1) DNS resolution latency

2) TCP connect time

3) TLS handshake time

4) HTTP(S) availability &
latency

5) Application-level SLA
measurements
(optional)

Synthetic
instrumentation yields tenant-
observable  ground  truth,
independent of Azure’s internal
systems.

To quantify probe anomalies,
UMSCA  computes  z-score
deviations:

zi=xi-poz_i = \frac{x_i -
\mu}{\sigma}zi=oxi—p

3.3

3.4

Where xix_ixi is the probe metric
and (p,0)(\mu, \sigma)(p,0) are
historical baselines.
Semantic Canonicalization
Cloud telemetry sources are
semantically  inconsistent. = UMSCA
employs a canonical metadata model to
unify attributes across sources.
a. Entity Normalization
Each event is
transformed into a normalized
tuple:
e={t,r,5,0,0,0le = \(t, 1, s, \theta,
\phi, \rho\}e={t1,s,0,0,0}
Where:
1) ttt: event timestamp
2) rrr:region

3) sss: resource/service
identifier

4) 0\thetaO: severity
vector

5) ¢\phi¢p: signal type

(SH, RH, EH, SYN)

6) o\rhoo: metadata fields

(hash map)

UMSCA resolves
naming mismatches using string
similarity + region ontology
mapping.

b. Dependency Graph Enrichment
A multi-layer service
dependency graph G=(V,E)G =
(V,LE)YG=(V,E) is constructed,
where:
1) VVV =cloud resources +
platform services
2) EEE = operational,
network, identity, or
orchestration
dependencies
For each event, UMSCA
enriches metadata with
upstream/downstream
dependencies. This enables
inferential blast-radius
detection.
Probabilistic ~ Temporal  Alignment
Engine

Different telemetry streams
operate with distinct latencies; thus,
naive timestamp comparison yields false
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3.5

divergence. UMSCA introduces a
probabilistic temporal model built on:

1) Sliding temporal windows
2) Out-of-order event
compensation
3) Signal-specific latency priors
Each event's “true occurrence
time” is estimated as:
T+=Tobserved-A¢dpT"\ast =
T_\text{observed} -
\lambda_\ phiT+*=Tobserved-Ad
Where:
Ad\lambda_\phiAd = expected latency
for signal type ¢\ phidp
Empirically derived priors (example
values):
1) Service Health ASH=60-
200s\lambda_{SH} \approx 60—
200sASH=60-200s
2) Resource  Health ARH=20-
90s\lambda_{RH} \approx 20-
90sARH=~20-90s
3) Event Hub AEH=5-
30s\lambda_{EH} \approx 5-
30sAEH~5-30s
4) Synthetic ASYN=0-
5s\lambda_{SYN} \approx O0-
5sASYN=0-5s
A Bayesian smoothing filter
refines timestamps across signals:
P(T*|T,p)«P(T|T*,¢)P(T*)P(T \astI T,\p
hi) \propto P(T | T"\ast, \phi)
P(T™\ ast)P(T*|T,p)xP(TIT*,¢)P(Tx)
This generates temporally coherent
multi-signal event clusters.
Divergence Detection Model

UMSCA identifies four
divergence types:

1) Provider-Lag Divergence
Occurs when synthetic or
resource anomalies precede
Service Health notification:
DPL=(TSYN#*<TSH*-0)D_{PL} =
(T_{SYN}"\ast < T_{SH}"\ast -
\ delta)DPL=(TSYN*<TSH=*-0)

2) Resource-Lag Divergence
Service Health acknowledges an
outage without corresponding
Resource Health degradation:

DRL=(TSH+<TRH*-0)D_{RL} =
(T_{SH}"\ast < T_{RH}"\ast -
\ delta) DRL=(TSH*<TRH#*-0)

3) Event Hub Ingestion Divergence

Detected when  ingestion
reliability y<t\gamma <
\tauy<t:

DEH=(y<0.85)D_{EH} =
(\gamma < 0.85)DEH=(y<0.85)
4) Synthetic-Only Divergence

Synthetic probes detect
anomalies when all Azure
signals appear normal. This
indicates path-, DNS-, or CDN-
level failures.

UMSCA  computes divergence

probability:
P(DKIE)=o(Wk-f(E))P(D_KIE) =
\sigma(W_k \cdot
f(E))P(Dk|E)=0(Wk-f(E))

Where:

a. f(E)f(E){(E) = extracted
feature vector

b. WKW_kWk =
divergence classifier
weights

c. o\sigmac = logistic
function

3.6 Reliability Estimation Model

The final reliability score
Re([0,100]R \in [0,100]R€[0,100]
integrates all normalized signals:
R=100-(w1ASH+w2ARH+w3AEH+w4A
SYN+w5)kDK)R = 100 - \left( w_1
A_{SH} + w_2 A_{RH} + w_3 A_{EH} +
w_ 4 A_{SYN} + w_5 \sum_k D_k
\right)R=100-(w1ASH+w2ARH+wW3AE

H+w4ASYN+wb5k)Y Dk)
Where:

1) ASH,ARHA_{SH},
A_{RH}ASH,ARH: anomaly
scores

2) AEHA_{EH}AEH: ingestion

anomaly score

3) ASYNA_{SYN}ASYN: synthetic
anomaly score

4) DkD_kDk: divergence penalties

5) wiw_iwi: weights learned via
cross-validation
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3.7 Blast-Radius Inference
Given a cluster of correlated
events CCC, we infer blast radius:
BR={rieRegions|P(Impact(ri)|C)>n}BR =
\M{ r_i \in \text{Regions} \mid

P(\text{Impact}(r_i) I C) > \eta
\ }BR={ri€Regions|P(Impact(ri)|C)>n}
UMSCA estimates:

1) number of impacted regions

2) affected subscriptions

3) degraded services

4) inferred propagation paths
This supports cross-subscription
enterprise operations.

4. RESULTS AND DISCUSSION

A 30-day evaluation was conducted
to measure UMSCA’s performance across
accuracy, timeliness, correlation fidelity,
divergence detection, and operational
relevance.

4.1 Results
a. Experimental Design
Environment
1) 40 Azure subscriptions
2) 18 regions (Americas,
EMEA, APAC)

3) 1,200
resources
4) 15 service families
5) 3.2 million health and
diagnostic events
Injected Failure Scenarios

heterogeneous

1) Regional fabric
instability

2) DNS propagation
degradation

3) Control-plane throttling

4) Resource Health
propagation lag

5) Synthetic-only network
path failures

6) Event Hub ingestion
backpressure

Ground Truth Construction
Each injected failure had
manually defined:

1) onset timestamp

2) affected services

3) propagation behavior

4) expected anomaly

profile
b. Mean Time to Detect (MTTD)

Table 1. Mean Time to Detect (MTTD) Across Detection Sources

Detection Source MTTD (s) Improvement vs Baseline
Azure Service Health 427 -
Azure Resource Health 311 -
Synthetic Monitoring 181 -
UMSCA (Proposed Model) 52 +88% vs SH /+72% vs SYN

UMSCA’s low MTTD

outperforming all single-source

reflects tight temporal alignment baselines.
and multi-signal inference, c¢.  Multi-Signal Correlation
Fidelity
Table 2. Model Performance on Multi-Signal Fidelity (Precision, Recall, F1)
Model Precision Recall F1

SH Only 0.43 0.38 0.40

RH Only 0.49 0.51 0.50

SYN Only 0.61 0.72 0.66

UMSCA 0.92 0.88 0.90

UMSCA  achieves near alignment and robust

state-of-the-art correlation, canonicalization.
enabled by probabilistic
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d. Divergence Detection Accuracy

Table 3. Divergence Detection Accuracy Across Divergence Types

Divergence Type Precision Recall F1 Score
Provider-Lag 0.93 091 0.92
Resource-Lag 0.89 0.86 0.87
Event Hub Divergence 0.84 0.81 0.82
Synthetic-Only Divergence 0.78 0.76 0.77

UMSCA captures Correlation  reduces  post-
temporal inconsistencies with alignment ambiguity to 4%,
high fidelity — especially compared to 14-19% in Event

Provider-Lag, the most Hub-only systems.
operationally critical case. f. Synthetic Early Detection

e. Ingestion Reliability Advantage

Evaluation Synthetic probes
Diagnostics: detected observable anomalies
1) Missing message 5m 41s  before Azure

detection: 86% accuracy
2) Consumer-group skew
detection: 91% accuracy
3) Schema anomaly
detection: 82% accuracy

acknowledgements on average.
UMSCA integrates these signals
for early, validated detection.

g. Blast-Radius Estimation
Performance

Table 4. Blast-Radius Impact Estimation Performance

Impact Level Accuracy
Single Region 93%
Multi-Region 81%
Subscription-Level 90%

The dependency graph
and probabilistic  clustering
enhance cross-region inference.

h. Reliability Score Validation

Pearson correlation
between UMSCA’s reliability
score and ground-truth health:

1) 0.94 (resource-level)
2) 0.91 (region-level)
3) 0.95 (service-level)

Indicating that the score
is a strong surrogate metric for
real operational state.

4.2 Discussion

The empirical results
demonstrate that the Unified Multi-
Signal Correlation Architecture
(UMSCA) materially advances the state
of cloud reliability engineering by
enabling proactive, provider-
independent outage detection across
heterogeneous Azure environments.

This section contextualizes the findings,
situates them relative to existing industry
and academic work, articulates inherent
limitations, and outlines operational
implications.
a. Implications for Cloud
Reliability Engineering
UMSCA’s performance
illustrates that reliability
intelligence must extend beyond

provider-issued telemetry,
which is fundamentally
constrained by internal

communication pipelines and
validation =~ workflows.  The
ability to infer outages prior to
formal acknowledgement has
profound implications for:

1) SRE incident command

models
2) Failover and routing
automation
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3) Enterprise change-
management processes
4) Service-level objective
(SLO) adherence
5) High-availability
architectures in
regulated domains
By providing earlier
situational awareness, UMSCA
effectively increases the
available “reaction window”
between event onset and
customer-visible  impact, a
critical differentiator for large-
scale cloud operations.
The Necessity of Multi-Modal
Fusion
Each telemetry source—
Service Health, Resource Health,
Event Hub, synthetic probes—
exhibits  inherent structural
limitations. UMSCA
demonstrates that these
limitations are not merely
inconvenient but systemic:
1) Service Health is
accurate but delayed.
2) Resource Health is
granular but incomplete
during  platform-scale

degradation.
3) Event Hub is high-
throughput but

semantically unreliable.
4) Synthetic signals are
early but ambiguous
without corroboration.
Thus, no single source
provides sufficiently reliable
information for enterprise-grade
outage detection. The fusion of
signals, augmented with
probabilistic  modeling and
divergence analytics, yields a
materially improved
representation of cloud health.
Temporal Coherence as a
Fundamental Challenge
A key insight is that time
inconsistency is the principal
source of unreliability in cloud

health telemetry. Azure
subsystems operate with distinct
latency  profiles, validation
paths, update cycles, and
propagation patterns. As a
result, relying on timestamps at
face value inherently
misrepresents event causality.
UMSCA’s temporal-
alignment model effectively
restores coherence by correcting
observed timestamps to their
probable  occurrence times,
accounting for:
1) Event-source latency
distributions
2) Out-of-order arrivals
3) Ingestion delays
4) Provider-level
communication delays
This directly improves
anomaly classification,
correlation fidelity, and root-
cause inference.
Divergence as a First-Class
Reliability Indicator
Traditional ~monitoring
frameworks treat divergence
(mismatched signals) as noise.
This work demonstrates that
divergence is not noise—it is
information:
1) Provider-lag indicates

control-plane or
communication pipeline
delays.

2) Resource-lag indicates
partial  outages  or
control-plane
propagation
inconsistencies.

3) Synthetic-only
anomalies indicate path
dependence or external
degradation.

4) Event Hub divergence
reveals ingestion issues.
UMSCA reframes

divergence as a first-class
operational signal, central to
accurate outage detection.
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e. Enterprise-Scale Operational
Value
For  multi-subscription
Azure environments, UMSCA:
1) Provides uniform
outage detection across
diverse workloads
2) Illuminates hidden
propagation patterns
3) Supports coordinated

cross-team incident
response

4) Enables automated
routing  or  cluster
failover

5) De-risks regulatory
workloads requiring
high availability

6) Improves auditability
and post-incident RCA
quality
The  architecture is

especially potent for enterprises
with global presence,
heterogeneous workloads, and
strict uptime constraints.
f. Limitations
Despite its strengths,

UMSCA has inherent
limitations:
1) Dependence on
Observable Signals

Internal Azure failures
with  no  externally
observable effects
cannot be detected.

2) Event Hub Sampling
Incompleteness
Extreme ingestion loss
may  limit RL/EH

divergence  inference
accuracy.

3) Synthetic Probe
Coverage

Geographic under-
provisioning of
synthetic probes may
reduce early detection
reliability.

4) Cross-Cloud
Generalization

While designed to be
cloud-agnostic,
adaptation to AWS,
GCP, or OCI requires
additional canonical
mappings.
5) Absence of Full Root-
Cause Analysis
UMSCA infers outage
likelihood, not
underlying code or infra
defects within Azure.
These limitations
represent  opportunities  for
future expansion rather than
fundamental flaws in the
architecture.

5. CONCLUSION

This work introduced the Unified
Multi-Signal Correlation Architecture
(UMSCA)—a provider-independent,
inference-driven reliability framework that
synthesizes heterogeneous Azure health
telemetry to deliver proactive outage
detection. By integrating Service Health
advisories, Resource Health signals, Event
Hub-exported diagnostics, and synthetic
endpoint instrumentation, UMSCA corrects
structural deficiencies in provider telemetry,
enabling earlier detection, higher correlation
accuracy, and reliable blast-radius inference.

The  architecture’s  probabilistic
temporal alignment model, divergence
detection engine,
framework, and
mechanism collectively outperform existing
approaches. Across a 30-day enterprise-scale
simulation involving 3.2 million events,
UMSCA reduced Mean Time to Detect
(MTTD) by 88%, improved correlation fidelity
to 92%, and achieved near state-of-the-art
performance in divergence detection and
multi-region impact modeling.

UMSCA advances the state of cloud
reliability engineering by demonstrating that
multi-signal fusion is essential for accurate,
timely outage detection in hyperscale cloud
environments. It provides a foundation for
future research in autonomous cloud

canonicalization
reliability scoring
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resilience, cross-cloud reliability intelligence,

and predictive outage modeling.

Future Work

Future research will explore several

avenues for enhancing UMSCA [7]:

Training RL agents to trigger routing
changes, DNS failovers, and
workload shifts.
Incorporating
Telemetry
Adding BGP data, traceroutes, and

Internet-Path

a. Multi-Cloud Extension CDN routing metadata to detect
Generalizing canonical models to global routing failures.
AWS, GCP, and OCI, enabling High-Fidelity Outage Simulation
unified outage intelligence across Framework
providers. Developing  synthetic  incident
b. Application Telemetry Integration generators to model rare and
Augmenting cloud health signals compound failure scenarios.
with distributed traces, latency Enhanced Blast-Radius Mapping
histograms, ~ and  microservice Leveraging graph neural networks
dependency graphs. (GNNs) for more accurate cross-
¢. Machine Learning—Driven Prediction region propagation inference.
Developing sequence-based models Causal Graph Modeling
(LSTM, Transformer) to predict Applying causal inference and do-
outages before observable calculus to distinguish correlated vs
degradation. causal degradation.
d. Reinforcement Learning for These enhancements would further
Automated Remediation establish UMSCA as a foundational
technology for next-generation cloud
resilience.
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