

An Integrated Production Pipeline for 2D Animation in Cultural Heritage Visualization

Dadan Zaliluddin¹, Tri Ferga Prasetyo², Maulana Ibrahim³

¹ University Majalengka

² University Majalengka

³ University Majalengka

Article Info

Article history:

Received Dec, 2025

Revised Dec, 2025

Accepted Dec, 2025

Keywords:

Animation Workflow;
Computer Graphics;
Cultural Heritage Visualization;
Digital Storytelling;
Production Pipeline

ABSTRACT

The visualization of cultural heritage through digital media has become an effective approach to preserving and disseminating historical narratives to a wider audience. However, the production of 2D animation for cultural heritage visualization often faces challenges related to inconsistent workflows, inefficiencies in production stages, and the lack of structured integration between storytelling and technical animation processes. This study aims to design and implement an integrated production pipeline for 2D animation that supports systematic, efficient, and reproducible development of cultural heritage visualization. The proposed pipeline is structured into three main stages: pre-production, production, and post-production, incorporating storytelling design, visual asset development, animation principles, and compositing techniques. The research adopts a design-based research approach, using a local cultural heritage case study as the implementation context. Data were collected through observation, documentation, and iterative development of animation assets, followed by qualitative evaluation of workflow effectiveness and production consistency. The results demonstrate that the integrated pipeline improves production efficiency, enhances visual coherence, and supports accurate representation of cultural narratives. The proposed framework provides a practical reference for animators, educators, and researchers in developing 2D animation-based cultural heritage visualization. This study contributes to the field of animation production systems by offering a structured pipeline model that bridges technical animation processes with cultural storytelling requirements.

This is an open access article under the [CC BY-SA](#) license.

Corresponding Author:

Name: Dadan Zaliluddin, ST., M.Kom.

Institution: Street. KH Abdul Halim No. 103, Majalengka Kulon, Majalengka District, Majalengka Regency, West Java 45418

Email: dadan@unma.ac.id

1. INTRODUCTION

The rapid development of digital media technology has significantly influenced the way cultural heritage is documented,

preserved, and disseminated to the public. Animation, particularly two-dimensional (2D) animation, has emerged as an effective visual medium for conveying historical

narratives in an engaging and accessible manner [1]. Through animation, complex cultural values and historical events can be transformed into visual storytelling that appeals to diverse audiences, including younger generations.

In the context of cultural heritage visualization, animation is not only used as an entertainment medium but also as an educational tool that supports knowledge transfer and cultural preservation. The application of animation principles, such as timing, motion, and visual expression, plays a crucial role in ensuring that historical narratives are delivered accurately and meaningfully [2]. Effective storytelling design further strengthens the narrative structure and emotional engagement within animated cultural content [3].

Despite its potential, the production of 2D animation for cultural heritage visualization often encounters challenges related to workflow inconsistency and lack of systematic production structure. Many animation projects rely heavily on individual experience rather than standardized production pipelines, resulting in inefficiencies during development stages [4]. Without a well-defined pipeline, coordination between pre-production, production, and post-production processes becomes difficult, leading to increased production time and inconsistent visual quality.

Several studies have proposed animation pipelines to improve efficiency and technical quality in animation production. A structured animation pipeline has been shown to enhance workflow integration and optimize asset management in animation development [5]. Pipeline-based approaches have also been successfully applied in both 2D and 3D animation environments to improve production scalability and consistency [6]. Furthermore, advanced animation pipelines incorporating automated processes have demonstrated improved precision and reproducibility in animation workflows [7].

However, most existing animation pipeline studies primarily focus on technical efficiency and visual performance, with limited attention given to cultural heritage

visualization and narrative integration. Research on animation pipelines for cultural contexts often emphasizes production techniques without explicitly addressing the preservation of cultural values and historical accuracy [8]. As a result, there is a noticeable research gap in the development of integrated production pipelines that balance technical animation processes with cultural storytelling requirements.

To address this gap, this study proposes an integrated production pipeline specifically designed for 2D animation in cultural heritage visualization. The proposed pipeline integrates storytelling design, animation principles, and technical production stages into a unified framework. By implementing the pipeline through a cultural heritage case study, this research aims to demonstrate how structured animation workflows can improve production efficiency while maintaining narrative authenticity and cultural integrity. The findings of this study are expected to contribute to the fields of animation production systems and digital cultural heritage by providing a practical and adaptable pipeline model.

2. LITERATURE REVIEW

2.1 Animation Production Pipeline

An animation production pipeline refers to a structured workflow that organizes animation development into systematic stages to improve efficiency and consistency. Early studies on animation pipelines emphasized the importance of coordinating technical processes to support realistic motion and synchronization in animated content [9]. A well-defined pipeline enables animation teams to manage assets, timing, and rendering processes more effectively during production stages [5].

The development of animation pipelines has evolved alongside advancements in computer graphics technology. Research on pipeline-based animation systems demonstrates that structured workflows can significantly

reduce production complexity and improve scalability in animation projects [6]. Pipeline integration has also been applied in professional digital production environments to enhance coordination between creative and technical processes [10].

Recent studies have explored automation and intelligence within animation pipelines to further improve production efficiency. Automated animation pipelines have been shown to support precise motion control and reduce manual workload in facial animation processes [7]. Hybrid pipeline approaches combining 3D-assisted techniques with 2D animation have also demonstrated effectiveness in enhancing visual quality and production flexibility [8].

2.2 2D Animation Principles and Storytelling

The effectiveness of animation content is strongly influenced by the application of fundamental animation principles. The twelve principles of animation remain essential guidelines for achieving believable motion and expressive visual storytelling in 2D animation [11]. Proper implementation of these principles contributes to clarity, emotional engagement, and narrative coherence in animated works (Anggara & Yusa, 2024).

Storytelling plays a central role in animation production, particularly in narrative-driven content. A structured storytelling approach helps ensure that visual elements, character development, and narrative flow are aligned with the intended message [3]. The integration of story design into the animation production pipeline supports consistency between conceptual planning and technical execution [4].

2.3 Animation for Cultural Heritage Visualization

Animation has increasingly been utilized as a medium for visualizing and preserving cultural heritage. Digital animation enables cultural narratives to be represented in visually engaging

formats that are accessible to broader audiences [1]. The use of animation as part of the creative industry highlights its potential to communicate cultural values and historical contexts effectively.

Several studies have focused on the representation of traditional cultural elements through animation techniques. Character classification and visualization of cultural artifacts have been explored to support digital documentation of heritage assets [12]. Cultural narratives have also been positioned as meaningful content for educational and informational animation development [13].

Despite these efforts, existing studies often focus on either technical animation development or cultural content representation without fully integrating both aspects. Many animation pipeline studies prioritize workflow efficiency while providing limited discussion on cultural storytelling integration [8]. Conversely, cultural animation research frequently lacks a structured production pipeline framework to ensure consistency and reproducibility [1].

2.4 Research Gap Identification

Based on the reviewed literature, there is a clear gap in research that integrates structured 2D animation production pipelines with cultural heritage visualization requirements. Existing animation pipeline studies predominantly emphasize technical efficiency and automation rather than narrative authenticity and cultural representation. Therefore, this study addresses the need for an integrated production pipeline that combines storytelling design, animation principles, and technical workflows to support effective cultural heritage visualization.

3. METHODS

3.1 Research Design

This study employs a design-based research approach to develop and evaluate an integrated production pipeline for 2D animation in cultural

heritage visualization. Design-based research is suitable for developing practical frameworks through iterative design, implementation, and evaluation in real-world contexts [14]. The research

focuses on producing a structured animation pipeline that integrates technical workflows with cultural storytelling requirements.

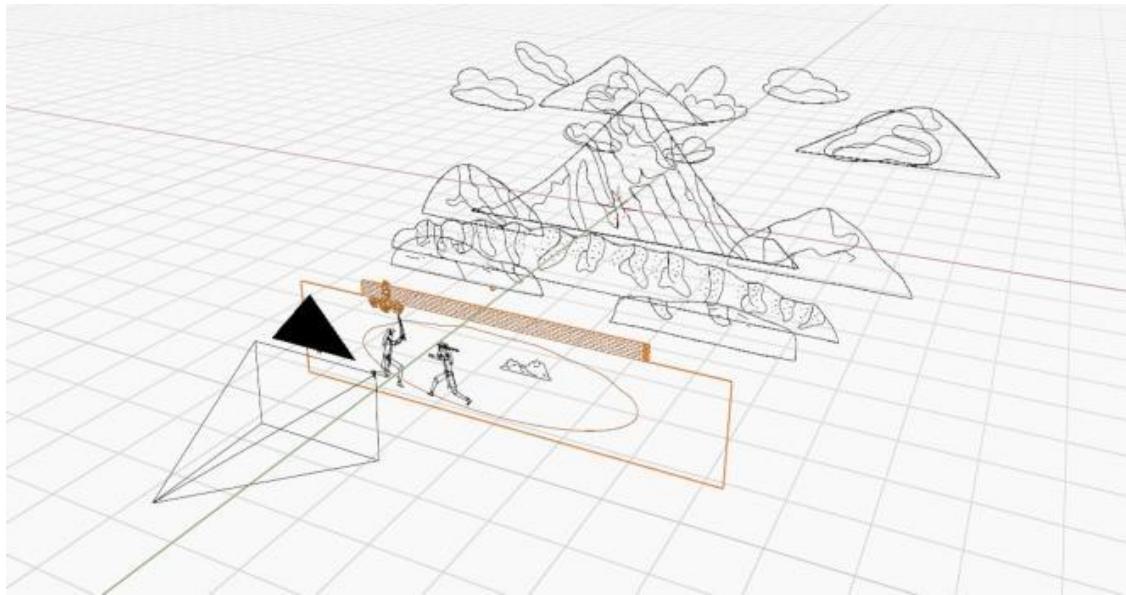


Figure 1. Camera placement and character positioning

3.2 Research Object and Scope

The object of this research is a 2D animation production pipeline applied to cultural heritage visualization content. The scope of the study includes the entire animation production process, covering pre-production, production, and post-production stages. The animation content is designed to represent cultural and historical narratives to support digital heritage preservation [1].

3.3 Pipeline Development Framework

The proposed production pipeline is structured into three main stages to ensure systematic workflow integration. The pre-production stage includes concept development, storytelling design, scriptwriting, and storyboard creation. Structured storytelling and storyboard planning are essential to align narrative flow with visual representation in animation projects [3].

The production stage focuses on visual asset creation, character design, background development, and animation execution. The application of animation

principles is emphasized during this stage to achieve believable motion and expressive visual output [11]. Asset development follows a structured pipeline to ensure consistency and efficiency throughout the animation process [15].

The post-production stage includes compositing, visual effects, rendering, and final output integration. Pipeline-based post-production processes are designed to optimize visual quality and ensure coherence between animation elements [6]. Quality control procedures are applied to maintain consistency across animation scenes.

3.4 Data Collection Techniques

Data collection in this study is conducted through observation, documentation, and iterative development of animation assets. Observation is used to analyze workflow effectiveness during each pipeline stage. Documentation is applied to record production activities, technical settings, and asset development processes [4].

3.5 Data Analysis

The data analysis process focuses on qualitative evaluation of pipeline performance. Workflow efficiency is analyzed by comparing production consistency and task coordination before and after pipeline implementation. Qualitative analysis is used to assess how effectively the pipeline supports integration between storytelling and technical animation processes [8].

3.6 Implementation and Evaluation

The proposed pipeline is implemented through a cultural heritage animation case study. The evaluation process examines the effectiveness of the pipeline in supporting structured production, visual coherence, and narrative clarity. Automated and structured pipeline elements are analyzed to determine their contribution to workflow efficiency and production reliability [7].

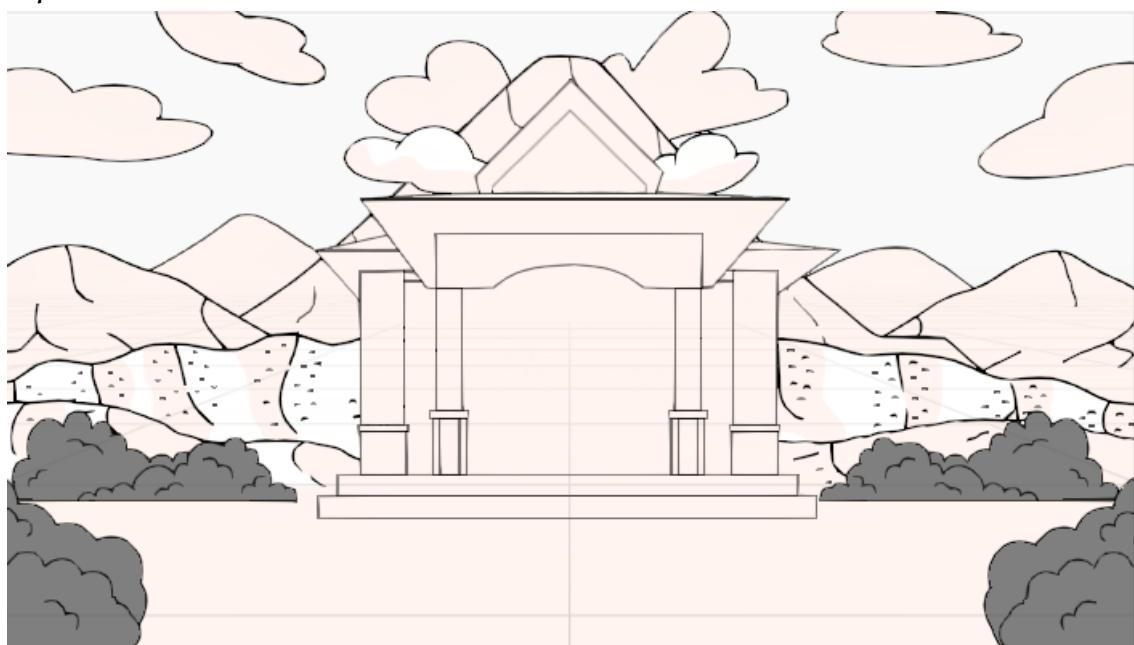


Figure 2. Background design

4. RESULTS AND DISCUSSION

4.1 Results

The implementation of the integrated production pipeline resulted in a structured workflow that clearly separated pre-production, production, and post-production stages. The pre-production phase successfully established consistent narrative structures through storyboard and script alignment, which improved coordination between visual planning and animation execution. The use of a systematic storytelling framework ensured that cultural narratives were translated into coherent visual sequences.

During the production stage, the application of standardized asset development procedures contributed to

improved visual consistency across animation scenes. Character design and background assets followed predefined specifications, which reduced variations in style and motion quality. The application of animation principles during this stage enhanced motion clarity and expressiveness in 2D animation output.

The animation pipeline demonstrated improved workflow efficiency by reducing redundancy in asset revisions and minimizing production delays. Structured asset management enabled animators to reuse visual components effectively, which streamlined the animation process. This finding aligns with previous studies that emphasized the role of pipeline

structuring in optimizing animation production workflows.

In the post-production stage, compositing and rendering processes were executed systematically according to the pipeline framework. Visual elements such as lighting, color grading, and scene transitions were integrated consistently across animation segments. The pipeline-supported post-production stage ensured stable visual output and improved overall animation quality.

4.2 Discussion

The results indicate that the integrated production pipeline effectively supports the development of 2D animation for cultural heritage visualization. The structured workflow facilitated coordination between narrative design and technical animation processes, which is often lacking in traditional animation production practices. This integration is essential for ensuring that cultural content is accurately represented while maintaining technical consistency.

Compared to conventional animation workflows that rely heavily on individual experience, the proposed pipeline offers a reproducible framework that can be adapted to similar cultural heritage projects. The findings support previous research that highlighted the benefits of pipeline-based animation systems in improving production scalability and consistency. The structured pipeline also provides a foundation for collaborative production environments.

From a cultural heritage perspective, the pipeline enables the systematic visualization of historical narratives through animation. The integration of storytelling design ensures that cultural values and historical contexts are preserved within the animation content. This result reinforces the role of animation as an effective medium for cultural heritage communication and education.

The findings also demonstrate that the pipeline supports balance between creative flexibility and technical control. While animation principles guide motion and expression, the structured workflow prevents excessive deviations that may compromise narrative coherence. This balance is critical in cultural heritage visualization, where accuracy and authenticity are essential.

Furthermore, the proposed pipeline contributes to addressing limitations identified in previous animation pipeline studies. Unlike pipelines that focus primarily on automation or technical optimization, this study emphasizes the integration of narrative and cultural considerations into the production workflow. This approach extends prior research on hybrid and automated animation pipelines by incorporating cultural storytelling as a core component.

Overall, the results confirm that an integrated production pipeline can enhance efficiency, consistency, and narrative clarity in 2D animation-based cultural heritage visualization. The proposed pipeline provides a practical reference model for animators, educators, and researchers seeking to develop structured animation systems for cultural and educational applications.

5. CONCLUSION

This study has presented an integrated production pipeline for 2D animation in cultural heritage visualization that systematically connects pre-production, production, and post-production stages into a unified workflow. The results demonstrate that the proposed pipeline improves production efficiency, enhances visual consistency, and supports coherent integration between storytelling design and technical animation processes. By applying structured narrative planning, standardized asset development, and controlled post-production procedures, the pipeline ensures accurate representation of cultural narratives

while maintaining high-quality visual output. The findings confirm that a well-defined animation production pipeline can effectively address common challenges in cultural heritage animation projects, particularly those related to workflow inconsistency and narrative fragmentation.

In addition to its technical contributions, this research offers practical implications for animators, educators, and digital heritage practitioners by providing a reproducible framework that can be adapted to various cultural contexts. Future research may extend this pipeline by incorporating quantitative performance metrics, user experience evaluation, or automation techniques to further optimize production workflows. The integration of interactive elements or immersive technologies such as virtual reality may also enhance audience engagement and expand the application of the proposed pipeline in digital cultural heritage visualization.

REFERENCES

- [1] D. I. S. Saputra, D. Manongga, and H. Hendry, "Animation as a Creative Industry: State of the Art," in *Proceedings - 2021 IEEE 5th International Conference on Information Technology, Information Systems and Electrical Engineering: Applying Data Science and Artificial Intelligence Technologies for Global Challenges During Pandemic Era, ICITISEE 2021*, 2021. doi: 10.1109/ICITISEE53823.2021.9655839.
- [2] I. G. A. S. Anggara and I. M. M. Yusa, "Penerapan 12 Prinsip Animasi Pada Film Animasi 2D Berjudul Pedanda Baka," *Jurnal Nauvala Visual*, vol. 6, no. 1, 2024.
- [3] F. Glebas, *Directing the story: Professional storytelling and storyboarding techniques for live action and animation*. 2012. doi: 10.4324/9780080928098.
- [4] T. Y. Mou, "Creative story design method in animation production pipeline," in *ICDC 2015 - Proceedings of the 3rd International Conference on Design Creativity*, 2015.
- [5] Jaejung Kim, Seo-Won Jung, 김진모, Minji Kim, and Jihye Seo, "Composed Animation Production Pipeline using Miniature Set," *Journal of the Korea Computer Graphics Society*, vol. 22, no. 3, 2016, doi: 10.15701/kcgs.2016.22.3.63.
- [6] T. Vignesh and T. Arul Praveen, "Pipeline for Development of 3 Dimensional motion animation using the 2 Dimensional video," in *2021 7th International Conference on Advanced Computing and Communication Systems, ICACCS 2021*, 2021. doi: 10.1109/ICACCS51430.2021.9442059.
- [7] D. Bigioi, H. Jordan, R. Jain, R. McDonnell, and P. Corcoran, "Pose-Aware Speech Driven Facial Landmark Animation Pipeline for Automated Dubbing," *IEEE Access*, vol. 10, 2022, doi: 10.1109/ACCESS.2022.3231137.
- [8] O. Dadfar and N. Pollard, "3A2A: A Character Animation Pipeline for 3D-Assisted 2D-Animation," in *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)*, 2021. doi: 10.1007/978-3-030-87361-5_46.
- [9] G. A. Kalberer, P. Müller, M. Proesmans, and L. Van Gool, "Animation pipeline: Realistic speech based on observed 3D face dynamics," in *IEE Conference Publication*, 2004.
- [10] B. J. Pohl, A. Harris, M. Balog, M. Clausen, G. Moran, and R. Brucks, "Fortnite: Supercharging CG animation pipelines with game engine technology," in *Proceedings - DigiPro 2017: ACM SIGGRAPH Digital Production Symposium*, 2017. doi: 10.1145/3105692.3114816.
- [11] W. Tri Widadijо, "12 Prinsip Animasi Dalam Serial 'Adit & Sopo Jarwo,'" *AKSA: Jurnal Desain Komunikasi Visual*, vol. 1, no. 1, 2020, doi: 10.37505/aksa.v1i1.7.
- [12] F. Fatmayati, M. Nugraheni, R. Nuraini, and F. Rossi, "Classification of Character Types of Wayang Kulit Using Extreme Learning Machine Algorithm," *Building of Informatics, Technology and Science (BITS)*, vol. 5, no. 1, 2023, doi: 10.47065/bits.v5i1.3568.
- [13] Y. P. Ardhi, "Wayang Kulit Sebagai Media Dakwah," *Skripsi*, 2010.

ACKNOWLEDGEMENTS

The author would like to express sincere gratitude to Prof. Dr. Indra Adi Budiman, M.Pd., Rector of Universitas Majalengka, for his support and leadership in fostering an academic environment that encourages research and scientific publication. Appreciation is also extended to Dony Susandi, S.T., M.T., Dean of the Faculty of Engineering, Universitas Majalengka, for his guidance and institutional support throughout the completion of this research. Furthermore, the author would like to thank Harun Sujadi, S.T., M.Kom., Head of the Informatics Study Program, for his continuous encouragement, valuable input, and support during the research and writing process. The author also acknowledges all parties who contributed directly or indirectly to the successful completion of this study.

[14] I. Nugraha Fatoni, I. Kaniawulan, and L. Sri Andar Muni, "User Interface Design Aplikasi Pelayanan Di Kantor Desa Hegarmanah Berbasis Mobile Dengan Design Science Research Methodology (DSRM)," *JATI (Jurnal Mahasiswa Teknik Informatika)*, vol. 7, no. 3, 2023, doi: 10.36040/jati.v7i3.6988.

[15] J. H. Kim and J. Lee, "Fire sprite animation using fire-flake texture and artificial motion blur," *IEEE Access*, vol. 7, pp. 110002–110011, 2019, doi: 10.1109/ACCESS.2019.2934163.

BIOGRAPHIES OF AUTHORS

	<p>Dadan Zaliluddin is a lecturer and researcher in Informatics at the University of Majalengka. His research focuses on visual computing, digital image processing, data visualization, interactive multimedia, and VR/AR technology. He is active in scientific publications, educational game development, and research-based technology training in academic and community settings. His involvement reflects a strong dedication to innovation and the advancement of technology-based education. email: dadanz@unma.ac.id</p>
	<p>Tri Ferga Prasetyo is a lecturer at the University of Majalengka focusing on computer graphics, information systems, and artificial intelligence. His research focuses on Hybrid IoT-AI integration, interactive multimedia, and virtual reality. He is active in scientific publications, application development, and community service projects. With his academic background and experience in the industrial world, he promotes the use of modern technology for learning, digital transformation, and innovation in the creative sector. email: triferga.prasetyo@gmail.com</p>
	<p>Maulana Ibrahim received his undergraduate degree in Informatics from the Faculty of Engineering, Universitas Majalengka, Indonesia. His academic interests focus on computer graphics, animation technology, and digital media development, with particular emphasis on 2D animation production pipelines and cultural heritage visualization. His research explores the integration of structured animation workflows with storytelling techniques to support effective digital preservation and educational media. He is actively interested in applying information technology and animation systems to cultural and creative industry contexts. email: ibrahimalan691@gmail.com</p>