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 Securing Kubernetes worker nodes remains a persistent challenge in 

enterprise environments due to configuration drift, inconsistent 

operating system hardening, and limited visibility into runtime 

security posture. While the Center for Internet Security (CIS) provides 

benchmark recommendations for Kubernetes and Linux systems, 

manual enforcement of these controls is error-prone and difficult to 

sustain at scale. This paper presents an automated approach for 

hardening Kubernetes worker nodes by integrating CIS benchmark 

compliance with Linux security controls using configuration 

management automation. The proposed framework focuses on 

repeatable enforcement, continuous compliance validation, and 

operational stability. We describe the system architecture, control 

mapping strategy, and automation workflow, and evaluate its impact 

on configuration compliance and operational availability in a 

controlled Kubernetes environment. Results demonstrate measurable 

improvements in benchmark compliance while maintaining cluster 

stability, highlighting the feasibility of automation-driven security 

hardening for Kubernetes worker nodes. 
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1. INTRODUCTION 

Kubernetes has become the de facto 

platform for container orchestration in 

enterprise environments, enabling scalable 

deployment of cloud-native applications 

across on-premise and hybrid infrastructures 

[1]–[6]. While Kubernetes provides built-in 

mechanisms for scheduling, service 

discovery, and fault tolerance, the security of 

the underlying worker nodes remains a 

critical and frequently underestimated 

concern [7], [8]. Worker nodes host 

application workloads, container runtimes, 

and node-level services such as kubelet, 

making them a high-value target for attackers 

seeking lateral movement or privilege 

escalation within a cluster [9]–[11]. 

Industry guidelines such as the 

Center for Internet Security (CIS) Benchmarks 

provide prescriptive recommendations for 

securing both Kubernetes components and 

Linux operating systems [12]. However, in 

practice, enforcing these benchmarks 

consistently across worker nodes is 

challenging. Enterprise clusters often suffer 

from configuration drift due to manual 

changes, inconsistent patching practices, and 

variations in node provisioning workflows 

[13], [14]. As clusters scale, manual hardening 

becomes error-prone and operationally 

unsustainable, increasing the risk of 

https://creativecommons.org/licenses/by-sa/4.0/
mailto:balaramaa@gmail.com


The Eastasouth Journal of Information System and Computer Science (ESISCS)    

Vol. 1, No. 01, August, pp. 156 - 168 

 

157 

misconfigurations that weaken the overall 

security posture [15]–[17]. 

Automation is widely recognized as a 

key enabler for scalable infrastructure 

management, yet its application to 

Kubernetes worker node hardening is often 

fragmented [18]. Organizations may apply 

CIS benchmarks to Kubernetes control plane 

components while leaving operating system–

level controls partially enforced or 

unmanaged [19], [20]. This gap creates a 

layered security weakness where compliance 

at the orchestration layer does not guarantee 

protection at the host operating system layer. 

This paper presents an automated 

framework for securing Kubernetes worker 

nodes by integrating CIS benchmark 

recommendations with Linux operating 

system hardening controls. The proposed 

approach emphasizes repeatable 

enforcement, continuous compliance 

verification, and minimal operational 

disruption. Rather than introducing new 

security mechanisms, the framework 

systematically maps benchmark controls to 

enforceable Linux configurations and applies 

them using automation to reduce human 

error and configuration drift. 

The primary contributions of this 

paper are as follows: 

1. A structured analysis of Kubernetes 

worker node attack surfaces and their 

relationship to Linux operating 

system configurations. 

2. A control-mapping strategy that 

aligns CIS Kubernetes and Linux 

benchmarks with enforceable system-

level hardening actions. 

3. An automation-driven framework for 

applying, validating, and 

maintaining security controls while 

preserving cluster availability. 

The remainder of this paper is 

organized as follows. Section II reviews 

relevant background concepts and related 

work. Section III defines the threat model and 

problem scope. Section IV details the control 

mapping and hardening strategy. Section V 

describes the automation framework. Section 

VI outlines the experimental setup, followed 

by evaluation results in Section VII. Section 

VIII discusses limitations and operational 

considerations, and Section IX concludes the 

paper with directions for future research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Kubernetes Worker Node Architecture and Attack Surface 
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2. BACKGROUND AND 

RELATED WORK 
2.1 Kubernetes Worker Node Architecture 

A Kubernetes worker node is 

responsible for executing application 

workloads in the form of containers [21]. 

Each worker node typically consists of a 

Linux operating system, a container 

runtime (such as containerd or CRI-O), 

the kubelet agent, and supporting 

networking and storage components. The 

kubelet acts as the primary interface 

between the Kubernetes control plane and 

the node, managing pod lifecycle 

operations and reporting node status. 

Because worker nodes directly 

host application containers, they expose 

multiple attack surfaces, including the 

operating system kernel, filesystem, 

network stack, container runtime 

interfaces, and node-level configuration 

files [22]. A compromise at the worker 

node level can potentially lead to 

container breakout, unauthorized access 

to secrets, or lateral movement across the 

cluster. As a result, securing worker 

nodes is essential for maintaining cluster 

integrity and protecting hosted 

workloads. 

2.2 CIS Benchmarks for Kubernetes and 

Linux 

The Center for Internet Security 

publishes benchmarks that define 

security best practices for a wide range of 

technologies, including Kubernetes and 

Linux operating systems. The CIS 

Kubernetes Benchmark provides 

recommendations for securing cluster 

components such as the API server, 

controller manager, scheduler, and 

kubelet. Similarly, CIS Linux Benchmarks 

focus on operating system–level controls 

such as filesystem permissions, kernel 

parameters, audit logging, and access 

control mechanisms. 

While these benchmarks are 

comprehensive, they are primarily 

designed as compliance guidelines rather 

than operational frameworks. Many 

controls require contextual interpretation 

and careful enforcement to avoid 

disrupting system functionality. In 

Kubernetes environments, this challenge 

is amplified by the dynamic nature of 

nodes and workloads, where nodes may 

be frequently added, removed, or 

reconfigured. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. CIS Benchmarks Coverage for Kubernetes Worker Nodes 
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2.3 Limitations of Manual Hardening 

Approaches 

Manual implementation of CIS 

benchmarks is common in small or static 

environments but does not scale 

effectively in enterprise Kubernetes 

deployments. Manual hardening 

introduces several risks, including 

inconsistent enforcement across nodes, 

delayed remediation of 

misconfigurations, and increased 

likelihood of human error. Additionally, 

manual processes make it difficult to 

detect configuration drift over time, 

particularly in environments with 

frequent system updates or automated 

node provisioning. 

Prior studies and industry 

reports highlight that security 

misconfigurations remain a leading cause 

of infrastructure breaches, often resulting 

from incomplete or outdated hardening 

practices. These findings underscore the 

need for automated mechanisms that can 

enforce security controls consistently 

while adapting to operational changes 

[23]. 

2.4 Related Work 

Existing research on Kubernetes 

security has primarily focused on 

network policies, runtime container 

security, and access control mechanisms. 

While these studies address important 

aspects of cluster security, fewer works 

explicitly examine the integration of 

operating system hardening with 

Kubernetes worker node security. Some 

approaches rely on immutable 

infrastructure or specialized security 

agents, which may introduce additional 

complexity or performance overhead 

[24]–[26]. 

In contrast, this paper focuses on 

leveraging established benchmarks and 

widely adopted automation techniques to 

improve worker node security in a 

pragmatic and repeatable manner. By 

aligning CIS recommendations with 

enforceable Linux controls and 

automating their application, the 

proposed framework aims to bridge the 

gap between security guidelines and 

operational practice. 

3. THREAT MODEL AND 

PROBLEM DEFINITION 
3.1 Threat Model for Kubernetes Worker 

Nodes 

This work focuses on security 

threats targeting Kubernetes worker 

nodes, which represent a critical 

execution layer within a cluster. The 

threat model assumes an adversary who 

has obtained an initial foothold through 

common attack vectors such as 

compromised container images, 

vulnerable applications, exposed services, 

or stolen credentials. From this position, 

the attacker attempts to escalate 

privileges, access sensitive resources, or 

move laterally across the cluster. 

Worker nodes present multiple 

attack surfaces due to their layered 

architecture. At the operating system 

level, vulnerabilities in the Linux kernel, 

misconfigured system services, weak file 

permissions, and insecure kernel 

parameters can be exploited to gain 

elevated privileges. At the container 

runtime layer, improper isolation 

between containers and the host may 

allow container escape attacks. The 

kubelet service, which operates with 

elevated privileges on the node, is another 

critical component that can be abused if 

improperly secured. 

This paper assumes that the 

Kubernetes control plane is operational 

and protected according to standard best 

practices. The focus is intentionally 

limited to worker nodes, as these systems 

directly host application workloads and 

are more frequently exposed to untrusted 

code execution. Attacks on worker nodes 

can undermine higher-level Kubernetes 

security mechanisms, making node-level 

hardening a foundational requirement for 

cluster security. 
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Figure 3. Worker Node Attack Progression: Container Compromise to Lateral Movement 

3.2 Problem Definition 

Despite the availability of 

detailed CIS benchmarks for both Linux 

operating systems and Kubernetes 

components, enforcing these 

recommendations consistently across 

worker nodes remains a challenge in 

practice. Many organizations apply 

security controls during initial node 

provisioning but fail to maintain them 

over time. Changes introduced by system 

updates, emergency fixes, or manual 

interventions often lead to configuration 

drift that is difficult to detect and 

remediate. 

Manual hardening approaches 

do not scale well in dynamic Kubernetes 

environments, where worker nodes may 

be frequently added or replaced. 

Furthermore, partial implementation of 

benchmarks—such as securing 

Kubernetes configurations without 

corresponding Linux hardening—creates 

a false sense of security while leaving 

critical vulnerabilities unaddressed. 

The core problem addressed in 

this paper is the lack of a repeatable, 

automated mechanism to enforce and 

maintain CIS-aligned security controls on 

Kubernetes worker nodes without 

negatively impacting cluster availability. 

Specifically, there is a need to understand 

how benchmark recommendations can be 

translated into enforceable Linux 

configurations and applied at scale in a 

way that balances security, operational 

stability, and maintainability [27]. 

3.3 Design Goals 

Based on the identified threats 

and operational challenges, this work 

defines the following design goals [28]: 

1. Consistency: Ensure that security 

controls are applied uniformly across 

all worker nodes. 

2. Automation: Reduce reliance on 

manual intervention by enforcing 

hardening controls through 

automated mechanisms. 

3. Auditability: Enable continuous 

verification of compliance with CIS 

benchmarks. 

4. Operational Stability: Apply 

security controls without introducing 

unacceptable node downtime or 

workload disruption. 

5. Maintainability: Support ongoing 

updates and configuration changes 

while minimizing security drift. 
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These design goals guide the development of 

the hardening and automation framework 

presented in the following sections. 

4. CONTROL MAPPING AND 

HARDENING STRATEGY 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Control Mapping & Automation Enforcement 

4.1 Rationale for Control Mapping 

CIS benchmarks provide 

prescriptive recommendations for 

securing both Kubernetes components 

and Linux operating systems; however, 

they are published as separate documents 

with limited guidance on cross-layer 

enforcement. In Kubernetes worker 

nodes, this separation introduces 

ambiguity regarding responsibility 

boundaries between the orchestration 

layer and the host operating system. As a 

result, security controls may be 

implemented redundantly, 

inconsistently, or not at all. 

To address this challenge, this 

work adopts a control mapping approach 

that explicitly links CIS Kubernetes 

benchmark recommendations to 

corresponding Linux operating system 

hardening controls. The objective is to 

translate abstract security requirements 

into concrete, enforceable system 

configurations that can be applied 

consistently across worker nodes. This 

mapping enables systematic enforcement 

while reducing the likelihood of gaps 

caused by partial or overlapping 

implementations. 

4.2 Scope of Hardening Controls 

The proposed hardening strategy 

focuses on Kubernetes worker nodes and 

includes controls spanning the following 

domains: 

a. Operating System Hardening: 

Kernel parameters, filesystem 

permissions, audit logging, access 

control policies, and service 

configurations. 

b. Node-Level Kubernetes 

Components: 

Kubelet configuration files, 

authentication and authorization 

settings, and secure communication 

with the control plane. 

c. Runtime Environment Controls: 

Container runtime configurations, 

namespace isolation, and privilege 

restrictions. 

Controls related exclusively to 

control plane components, such as the 

API server or scheduler, are outside the 
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scope of this study and are assumed to 

follow established best practices. 

4.3 Mapping CIS Benchmarks to Enforceable 

Controls 

Each CIS benchmark 

recommendation is evaluated to 

determine whether it can be enforced at 

the Linux operating system level, the 

Kubernetes configuration level, or both. 

Controls are categorized into three types: 

a. Directly Enforceable Controls: 

Recommendations that map directly 

to Linux configurations, such as file 

permissions, kernel parameters, and 

service settings. 

b. Conditionally Enforceable Controls: 

Controls that require contextual 

interpretation, such as audit logging 

policies or runtime configurations 

that depend on workload 

characteristics. 

c. Verification-Only Controls: 

Recommendations that cannot be 

enforced automatically but can be 

continuously validated for 

compliance. 

Table I illustrates representative 

examples of the control mapping strategy. 

Table 1. Example Mapping of CIS Benchmark Controls to Linux Hardening Actions

CIS Recommendation Target Layer Linux Control Enforcement Method 

Secure kubelet config file 

permissions 
Kubernetes Node 

File ownership and 

permissions 

Configuration 

management 

Enable kernel address 

space protection 
OS Kernel sysctl parameters 

Automated 

enforcement 

Enable audit logging OS Services auditd configuration 
Policy-driven 

deployment 

Restrict SSH access OS Services sshd configuration 
Automated 

remediation 

This mapping ensures that 

security controls are applied using 

mechanisms appropriate to their 

execution layer while maintaining 

alignment with benchmark requirements. 

4.4 Hardening Strategy Design 

The hardening strategy is 

designed to balance security enforcement 

with operational stability. Controls are 

applied in a staged manner to minimize 

disruption to running workloads. The 

strategy distinguishes between static 

controls, which can be enforced during 

node provisioning, and dynamic controls, 

which may be applied or updated while 

nodes are in service. 

Static controls include filesystem 

permissions, kernel parameters, and 

baseline service configurations. These 

controls are typically enforced during 

initial node setup or maintenance 

windows. Dynamic controls, such as 

audit logging policies or kubelet 

configuration updates, are applied 

incrementally with validation steps to 

ensure node health is preserved. 

To reduce the risk of unintended 

service impact, each control is validated 

against the following criteria: 

a. Compatibility with Kubernetes node 

requirements 

b. Impact on system performance 

c. Reversibility in case of failure 

Controls that fail validation are 

flagged for manual review rather than 

automatically enforced. 

4.5 Security Drift Considerations 

Configuration drift is a common 

challenge in long-lived Kubernetes 

clusters, particularly in environments 

with frequent updates or manual 

interventions. The proposed strategy 

treats drift detection as a first-class 

concern rather than a secondary 

validation step. By maintaining a 

declarative definition of expected system 

state, deviations can be identified and 

addressed promptly. 
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Rather than reapplying all 

controls indiscriminately, the framework 

focuses on detecting meaningful 

deviations that affect security posture. 

This approach minimizes unnecessary 

configuration changes and reduces the 

risk of instability caused by repetitive 

enforcement actions. 

5. AUTOMATION FRAMEWORK 

DESIGN 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Automation Framework Enforcement Workflow 

5.1 Design Principles 

The automation framework is 

designed to enforce and maintain security 

hardening controls on Kubernetes worker 

nodes in a consistent and repeatable 

manner. Rather than introducing 

proprietary tooling, the framework 

leverages established configuration 

management and system administration 

practices commonly used in enterprise 

Linux environments. This design choice 

reduces operational risk and facilitates 

adoption in existing infrastructures. 

The framework adheres to the 

following principles: 

a. Idempotency: Repeated executions 

must not introduce unintended side 

effects. 

b. Minimal Disruption: Security 

controls should be applied without 

causing unnecessary node downtime 

or workload interruption. 

c. Auditability: All enforcement actions 

must be observable and verifiable. 

d. Extensibility: The framework should 

support incremental addition of new   

controls. 

These principles guide the 

implementation and execution of the 

automation workflow. 

5.2 Framework Architecture 

The automation framework 

follows a centralized orchestration model 

in which security policies are defined 

declaratively and enforced across worker 

nodes through controlled execution. 

Figure 1 illustrates the high-level 

architecture of the framework. 

At the core of the framework is a 

policy definition layer that specifies the 

desired security state of worker nodes. 

This includes kernel parameters, service 

configurations, file permissions, and 

audit policies derived from CIS 

benchmarks. An automation engine 

applies these policies to target nodes 

using secure communication channels. 
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Worker nodes periodically report 

compliance status, enabling centralized 

visibility into enforcement outcomes and 

deviations. This feedback loop supports 

continuous monitoring while avoiding 

constant reconfiguration of nodes. 

5.3 Enforcement Workflow 

The enforcement process follows 

a structured, multi-stage workflow to 

reduce operational risk. Each stage 

performs a specific function within the 

hardening lifecycle: 

a. Baseline Assessment: 

Worker nodes are scanned to 

determine current compliance status 

against defined policies. This step 

establishes a baseline and identifies 

deviations. 

b. Controlled Remediation: 

Non-compliant controls that are 

deemed safe for automated 

enforcement are remediated. 

Controls with potential service 

impact are flagged for manual 

approval. 

c. Post-Enforcement Validation: 

Node health checks are performed to 

verify that critical services, including 

kubelet and container runtime 

components, remain operational. 

d. Compliance Verification: 

Updated compliance status is 

recorded and compared against the 

desired state to confirm successful 

enforcement. 

This staged approach ensures 

that security improvements do not 

compromise node availability. 

5.4 Drift Detection and Maintenance 

Configuration drift is addressed 

through periodic validation rather than 

continuous re-enforcement. Worker 

nodes are evaluated at defined intervals to 

detect deviations from the desired 

security state. Detected drift is classified 

based on severity and potential impact. 

Minor deviations, such as 

modified file permissions, may be 

remediated automatically. More 

significant changes, including kernel 

parameter modifications or service 

reconfigurations, are logged for review. 

This selective remediation approach 

reduces unnecessary system changes and 

minimizes operational instability. 

5.5 Failure Handling and Recovery 

Automation failures are an 

expected risk in large-scale environments. 

The framework includes safeguards to 

prevent partial enforcement from leaving 

nodes in an inconsistent state. Changes 

are applied in discrete steps, with rollback 

mechanisms available for critical 

configurations. 

If a node fails validation checks 

following enforcement, the framework 

can suspend further actions and alert 

operators for intervention. This design 

prevents cascading failures and ensures 

that automation does not become a single 

point of failure. 

6. EXPERIMENTAL SETUP 
6.1 Test Environment Overview 

To evaluate the effectiveness and 

operational impact of the proposed 

automation framework, experiments 

were conducted in a controlled 

Kubernetes environment designed to 

reflect common enterprise worker node 

configurations. The evaluation 

environment focuses on worker node 

security and intentionally limits scope to 

node-level controls to isolate the impact of 

Linux hardening and CIS benchmark 

enforcement. 

The Kubernetes cluster used for 

evaluation consists of a small number of 

worker nodes sufficient to observe 

enforcement behavior, configuration 

drift, and operational stability. While the 

cluster size does not represent large-scale 

production deployments, it enables 

repeatable testing and detailed 

observation of enforcement outcomes. 

6.2 Cluster Configuration 

The experimental cluster includes 

a single Kubernetes control plane and 

multiple worker nodes running a Linux-

based operating system. Each worker 

node hosts application workloads 

deployed as containers and runs standard 



The Eastasouth Journal of Information System and Computer Science (ESISCS)    

Vol. 1, No. 01, August, pp. 156 - 168 

 

165 

Kubernetes node components, including 

the kubelet and container runtime. 

The operating system 

configuration reflects a typical enterprise 

Linux environment, including: 

a. Default kernel configurations prior to 

hardening 

b. Standard system services enabled for 

remote administration and logging 

c. Persistent storage and networking 

components required for Kubernetes 

operation 

No additional security agents or 

proprietary tools are installed on the 

worker nodes beyond those required for 

automation and compliance verification. 

6.3 Benchmark Selection 

The evaluation leverages publicly 

available CIS benchmarks relevant to 

Kubernetes worker nodes and Linux 

operating systems. These benchmarks are 

used as authoritative references for 

defining the desired security state. 

The selected benchmarks include: 

a. CIS Kubernetes Benchmark (worker 

node–related controls) 

b. CIS Linux Benchmark applicable to 

the operating system version under 

test 

Only controls that directly affect 

worker node security are included. 

Control plane–specific recommendations 

are excluded to maintain focus on node-

level hardening. 

6.4 Automation Tooling 

Automation is implemented 

using widely adopted configuration 

management and scripting tools 

commonly deployed in enterprise Linux 

environments. These tools are responsible 

for: 

a. Applying system-level configuration 

changes 

b. Validating enforcement outcomes 

c. Collecting compliance data 

All automation actions are 

executed using secure communication 

channels and adhere to least privilege 

principles. Automation tasks are designed 

to be idempotent, ensuring that repeated 

executions do not introduce unintended 

changes. 

7. EVALUATION AND RESULTS 
7.1 Compliance Improvement Analysis 

The primary objective of the 

evaluation is to assess the effectiveness of 

automation-driven hardening in 

improving compliance with selected CIS 

benchmark controls on Kubernetes 

worker nodes. Compliance is measured 

before and after the application of 

automated hardening policies to capture 

the impact of enforcement. 

Baseline assessments indicate 

that a subset of benchmark controls is not 

satisfied in the default worker node 

configuration. These non-compliant 

controls are primarily related to operating 

system–level settings, including kernel 

parameters, file permissions, and audit 

logging configurations. Following 

automated enforcement, a significant 

portion of these controls are remediated, 

resulting in an observable increase in 

overall compliance alignment. 

Figure 2 illustrates the change in 

benchmark compliance levels between 

the baseline and post-hardening states. 

The results demonstrate that automated 

enforcement improves consistency across 

worker nodes and reduces variability 

caused by manual configuration 

differences. 

7.2 Classification of Remediated Controls 

To better understand the nature 

of the observed improvements, 

remediated controls are grouped into 

categories based on their enforcement 

layer. The majority of remediated controls 

fall within the operating system 

hardening domain, including filesystem 

protections and kernel parameter 

configurations. A smaller subset relates to 

node-level Kubernetes settings, such as 

kubelet configuration permissions. 

Table II summarizes the 

distribution of remediated controls by 

category. This classification highlights the 

importance of addressing Linux 

operating system security as a 
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foundational element of Kubernetes 

worker node protection.

Table 2. Distribution of Remediated CIS Controls by Category

Control Category Relative Impact 

OS Kernel and Filesystem High 

System Services and Logging Moderate 

Kubernetes Node Configuration Moderate 

Runtime Environment Limited 

7.3 Operational Impact Assessment 

An essential requirement of the 

proposed framework is maintaining 

cluster availability during security 

enforcement. Throughout the evaluation, 

worker node status and workload 

execution are monitored to identify any 

service disruptions attributable to 

automation activities. 

Observations indicate that 

enforcement actions do not introduce 

prolonged node unavailability. 

Temporary configuration changes are 

applied in a controlled manner, and node 

health checks confirm continued 

operation of critical services. No 

persistent workload failures are observed 

during the evaluation window. 

Figure 3 presents a summary of 

observed node availability during 

enforcement phases, demonstrating that 

security improvements can be achieved 

without compromising operational 

stability when automation is applied 

judiciously. 

7.4 Configuration Drift Reduction 

Configuration drift is assessed by 

comparing worker node configurations 

over multiple evaluation cycles. 

Automated validation identifies 

deviations from the defined security 

baseline, enabling targeted remediation 

of affected controls. This approach 

reduces the likelihood of long-term drift 

caused by manual interventions or system 

updates [29]. 

The evaluation shows that 

automated drift detection improves 

visibility into security posture changes 

and supports timely remediation. This 

capability is particularly valuable in 

environments where worker nodes are 

frequently updated or replaced. 

7.5 Summary of Findings 

The evaluation results indicate 

that automation-driven enforcement of 

CIS-aligned Linux hardening controls can 

measurably improve security compliance 

on Kubernetes worker nodes while 

maintaining operational stability. These 

findings support the feasibility of 

integrating benchmark-based hardening 

into routine Kubernetes operations. 

8. DISCUSSION AND 

LIMITATIONS 

The evaluation results demonstrate 

that automation-driven enforcement of CIS-

aligned Linux hardening controls can 

improve the security posture of Kubernetes 

worker nodes without introducing significant 

operational disruption. By systematically 

mapping benchmark recommendations to 

enforceable operating system configurations, 

the proposed framework addresses a 

common gap between security guidelines and 

practical implementation. 

One key observation is that many 

security improvements are achieved at the 

operating system level rather than through 

Kubernetes-specific configurations. This 

finding reinforces the importance of host 

security as a foundational layer for 

containerized environments. Even when 

Kubernetes components are configured 

according to best practices, weaknesses in the 

underlying Linux system can undermine 

higher-level protections. 

Despite these positive outcomes, the 

proposed approach has several limitations. 

First, the evaluation is conducted in a 

controlled environment with a limited 
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number of worker nodes. While this enables 

detailed observation and repeatability, the 

results may not fully capture the complexity 

of large-scale production clusters with 

heterogeneous workloads and infrastructure. 

Second, the framework focuses on 

static and configuration-based security 

controls defined by CIS benchmarks. Runtime 

threats, such as zero-day exploits and 

advanced container escape techniques, are 

outside the scope of this study [30]. 

Additional security mechanisms, including 

runtime monitoring and behavioral analysis, 

would be required to address such threats 

comprehensively. 

Finally, not all benchmark controls 

are suitable for automated enforcement. 

Certain controls require contextual judgment 

or may conflict with application-specific 

requirements. The framework mitigates this 

risk by classifying controls based on 

enforceability and impact, but some degree of 

manual oversight remains necessary. 

These limitations highlight 

opportunities for future enhancements while 

reinforcing the practical value of automation 

for baseline security enforcement. 

 

 

 

9. CONCLUSION AND FUTURE 

WORK 

This paper presents an automated 

framework for securing Kubernetes worker 

nodes through the enforcement of CIS 

benchmark–aligned Linux hardening 

controls. By integrating operating system 

security with Kubernetes node 

configurations, the proposed approach 

improves compliance consistency and 

reduces configuration drift without 

compromising cluster availability. 

The results of the evaluation indicate 

that automation can effectively bridge the gap 

between security recommendations and 

operational practice. Rather than relying on 

manual hardening efforts, organizations can 

leverage automation to maintain a consistent 

security baseline across dynamic Kubernetes 

environments. 

Future work will focus on extending 

the framework to incorporate runtime 

security controls and continuous threat 

detection mechanisms. Additional evaluation 

in larger and more diverse cluster 

environments would provide further insight 

into scalability and performance tradeoffs. 

Integrating admission control policies and 

container image security assessments 

represents another promising direction for 

expanding the scope of automated security 

enforcement.
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