
The Eastasouth Journal of Information System and Computer Science

Vol. 1, No. 01, August, pp. 156 - 168

Journal homepage: https://esj.eastasouth-institute.com/index.php/esiscs

Systematic Enforcement of CIS-Aligned Security Controls for

Kubernetes Worker Nodes

Balaramakrishna Alti
AVP Systems Engineering, USA

Article Info ABSTRACT

Article history:

Received Aug, 2023

Revised Aug, 2023

Accepted Aug, 2023

 Securing Kubernetes worker nodes remains a persistent challenge in

enterprise environments due to configuration drift, inconsistent

operating system hardening, and limited visibility into runtime

security posture. While the Center for Internet Security (CIS) provides

benchmark recommendations for Kubernetes and Linux systems,

manual enforcement of these controls is error-prone and difficult to

sustain at scale. This paper presents an automated approach for

hardening Kubernetes worker nodes by integrating CIS benchmark

compliance with Linux security controls using configuration

management automation. The proposed framework focuses on

repeatable enforcement, continuous compliance validation, and

operational stability. We describe the system architecture, control

mapping strategy, and automation workflow, and evaluate its impact

on configuration compliance and operational availability in a

controlled Kubernetes environment. Results demonstrate measurable

improvements in benchmark compliance while maintaining cluster

stability, highlighting the feasibility of automation-driven security

hardening for Kubernetes worker nodes.

Keywords:

Automation;

CIS compliance;

Drift detection;

Linux hardening;

Worker node security

This is an open access article under the CC BY-SA license.

Corresponding Author:

Name: Balaramakrishna Alti

Institution: AVP Systems Engineering, USA

Email: balaramaa@gmail.com

1. INTRODUCTION

Kubernetes has become the de facto

platform for container orchestration in

enterprise environments, enabling scalable

deployment of cloud-native applications

across on-premise and hybrid infrastructures

[1]–[6]. While Kubernetes provides built-in

mechanisms for scheduling, service

discovery, and fault tolerance, the security of

the underlying worker nodes remains a

critical and frequently underestimated

concern [7], [8]. Worker nodes host

application workloads, container runtimes,

and node-level services such as kubelet,

making them a high-value target for attackers

seeking lateral movement or privilege

escalation within a cluster [9]–[11].

Industry guidelines such as the

Center for Internet Security (CIS) Benchmarks

provide prescriptive recommendations for

securing both Kubernetes components and

Linux operating systems [12]. However, in

practice, enforcing these benchmarks

consistently across worker nodes is

challenging. Enterprise clusters often suffer

from configuration drift due to manual

changes, inconsistent patching practices, and

variations in node provisioning workflows

[13], [14]. As clusters scale, manual hardening

becomes error-prone and operationally

unsustainable, increasing the risk of

https://creativecommons.org/licenses/by-sa/4.0/
mailto:balaramaa@gmail.com

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 1, No. 01, August, pp. 156 - 168

157

misconfigurations that weaken the overall

security posture [15]–[17].

Automation is widely recognized as a

key enabler for scalable infrastructure

management, yet its application to

Kubernetes worker node hardening is often

fragmented [18]. Organizations may apply

CIS benchmarks to Kubernetes control plane

components while leaving operating system–

level controls partially enforced or

unmanaged [19], [20]. This gap creates a

layered security weakness where compliance

at the orchestration layer does not guarantee

protection at the host operating system layer.

This paper presents an automated

framework for securing Kubernetes worker

nodes by integrating CIS benchmark

recommendations with Linux operating

system hardening controls. The proposed

approach emphasizes repeatable

enforcement, continuous compliance

verification, and minimal operational

disruption. Rather than introducing new

security mechanisms, the framework

systematically maps benchmark controls to

enforceable Linux configurations and applies

them using automation to reduce human

error and configuration drift.

The primary contributions of this

paper are as follows:

1. A structured analysis of Kubernetes

worker node attack surfaces and their

relationship to Linux operating

system configurations.

2. A control-mapping strategy that

aligns CIS Kubernetes and Linux

benchmarks with enforceable system-

level hardening actions.

3. An automation-driven framework for

applying, validating, and

maintaining security controls while

preserving cluster availability.

The remainder of this paper is

organized as follows. Section II reviews

relevant background concepts and related

work. Section III defines the threat model and

problem scope. Section IV details the control

mapping and hardening strategy. Section V

describes the automation framework. Section

VI outlines the experimental setup, followed

by evaluation results in Section VII. Section

VIII discusses limitations and operational

considerations, and Section IX concludes the

paper with directions for future research.

Figure 1. Kubernetes Worker Node Architecture and Attack Surface

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 1, No. 01, August, pp. 156 - 168

158

2. BACKGROUND AND

RELATED WORK
2.1 Kubernetes Worker Node Architecture

A Kubernetes worker node is

responsible for executing application

workloads in the form of containers [21].

Each worker node typically consists of a

Linux operating system, a container

runtime (such as containerd or CRI-O),

the kubelet agent, and supporting

networking and storage components. The

kubelet acts as the primary interface

between the Kubernetes control plane and

the node, managing pod lifecycle

operations and reporting node status.

Because worker nodes directly

host application containers, they expose

multiple attack surfaces, including the

operating system kernel, filesystem,

network stack, container runtime

interfaces, and node-level configuration

files [22]. A compromise at the worker

node level can potentially lead to

container breakout, unauthorized access

to secrets, or lateral movement across the

cluster. As a result, securing worker

nodes is essential for maintaining cluster

integrity and protecting hosted

workloads.

2.2 CIS Benchmarks for Kubernetes and

Linux

The Center for Internet Security

publishes benchmarks that define

security best practices for a wide range of

technologies, including Kubernetes and

Linux operating systems. The CIS

Kubernetes Benchmark provides

recommendations for securing cluster

components such as the API server,

controller manager, scheduler, and

kubelet. Similarly, CIS Linux Benchmarks

focus on operating system–level controls

such as filesystem permissions, kernel

parameters, audit logging, and access

control mechanisms.

While these benchmarks are

comprehensive, they are primarily

designed as compliance guidelines rather

than operational frameworks. Many

controls require contextual interpretation

and careful enforcement to avoid

disrupting system functionality. In

Kubernetes environments, this challenge

is amplified by the dynamic nature of

nodes and workloads, where nodes may

be frequently added, removed, or

reconfigured.

Figure 2. CIS Benchmarks Coverage for Kubernetes Worker Nodes

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 1, No. 01, August, pp. 156 - 168

159

2.3 Limitations of Manual Hardening

Approaches

Manual implementation of CIS

benchmarks is common in small or static

environments but does not scale

effectively in enterprise Kubernetes

deployments. Manual hardening

introduces several risks, including

inconsistent enforcement across nodes,

delayed remediation of

misconfigurations, and increased

likelihood of human error. Additionally,

manual processes make it difficult to

detect configuration drift over time,

particularly in environments with

frequent system updates or automated

node provisioning.

Prior studies and industry

reports highlight that security

misconfigurations remain a leading cause

of infrastructure breaches, often resulting

from incomplete or outdated hardening

practices. These findings underscore the

need for automated mechanisms that can

enforce security controls consistently

while adapting to operational changes

[23].

2.4 Related Work

Existing research on Kubernetes

security has primarily focused on

network policies, runtime container

security, and access control mechanisms.

While these studies address important

aspects of cluster security, fewer works

explicitly examine the integration of

operating system hardening with

Kubernetes worker node security. Some

approaches rely on immutable

infrastructure or specialized security

agents, which may introduce additional

complexity or performance overhead

[24]–[26].

In contrast, this paper focuses on

leveraging established benchmarks and

widely adopted automation techniques to

improve worker node security in a

pragmatic and repeatable manner. By

aligning CIS recommendations with

enforceable Linux controls and

automating their application, the

proposed framework aims to bridge the

gap between security guidelines and

operational practice.

3. THREAT MODEL AND

PROBLEM DEFINITION
3.1 Threat Model for Kubernetes Worker

Nodes

This work focuses on security

threats targeting Kubernetes worker

nodes, which represent a critical

execution layer within a cluster. The

threat model assumes an adversary who

has obtained an initial foothold through

common attack vectors such as

compromised container images,

vulnerable applications, exposed services,

or stolen credentials. From this position,

the attacker attempts to escalate

privileges, access sensitive resources, or

move laterally across the cluster.

Worker nodes present multiple

attack surfaces due to their layered

architecture. At the operating system

level, vulnerabilities in the Linux kernel,

misconfigured system services, weak file

permissions, and insecure kernel

parameters can be exploited to gain

elevated privileges. At the container

runtime layer, improper isolation

between containers and the host may

allow container escape attacks. The

kubelet service, which operates with

elevated privileges on the node, is another

critical component that can be abused if

improperly secured.

This paper assumes that the

Kubernetes control plane is operational

and protected according to standard best

practices. The focus is intentionally

limited to worker nodes, as these systems

directly host application workloads and

are more frequently exposed to untrusted

code execution. Attacks on worker nodes

can undermine higher-level Kubernetes

security mechanisms, making node-level

hardening a foundational requirement for

cluster security.

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 1, No. 01, August, pp. 156 - 168

160

Figure 3. Worker Node Attack Progression: Container Compromise to Lateral Movement

3.2 Problem Definition

Despite the availability of

detailed CIS benchmarks for both Linux

operating systems and Kubernetes

components, enforcing these

recommendations consistently across

worker nodes remains a challenge in

practice. Many organizations apply

security controls during initial node

provisioning but fail to maintain them

over time. Changes introduced by system

updates, emergency fixes, or manual

interventions often lead to configuration

drift that is difficult to detect and

remediate.

Manual hardening approaches

do not scale well in dynamic Kubernetes

environments, where worker nodes may

be frequently added or replaced.

Furthermore, partial implementation of

benchmarks—such as securing

Kubernetes configurations without

corresponding Linux hardening—creates

a false sense of security while leaving

critical vulnerabilities unaddressed.

The core problem addressed in

this paper is the lack of a repeatable,

automated mechanism to enforce and

maintain CIS-aligned security controls on

Kubernetes worker nodes without

negatively impacting cluster availability.

Specifically, there is a need to understand

how benchmark recommendations can be

translated into enforceable Linux

configurations and applied at scale in a

way that balances security, operational

stability, and maintainability [27].

3.3 Design Goals

Based on the identified threats

and operational challenges, this work

defines the following design goals [28]:

1. Consistency: Ensure that security

controls are applied uniformly across

all worker nodes.

2. Automation: Reduce reliance on

manual intervention by enforcing

hardening controls through

automated mechanisms.

3. Auditability: Enable continuous

verification of compliance with CIS

benchmarks.

4. Operational Stability: Apply

security controls without introducing

unacceptable node downtime or

workload disruption.

5. Maintainability: Support ongoing

updates and configuration changes

while minimizing security drift.

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 1, No. 01, August, pp. 156 - 168

161

These design goals guide the development of

the hardening and automation framework

presented in the following sections.

4. CONTROL MAPPING AND

HARDENING STRATEGY

Figure 4. Control Mapping & Automation Enforcement

4.1 Rationale for Control Mapping

CIS benchmarks provide

prescriptive recommendations for

securing both Kubernetes components

and Linux operating systems; however,

they are published as separate documents

with limited guidance on cross-layer

enforcement. In Kubernetes worker

nodes, this separation introduces

ambiguity regarding responsibility

boundaries between the orchestration

layer and the host operating system. As a

result, security controls may be

implemented redundantly,

inconsistently, or not at all.

To address this challenge, this

work adopts a control mapping approach

that explicitly links CIS Kubernetes

benchmark recommendations to

corresponding Linux operating system

hardening controls. The objective is to

translate abstract security requirements

into concrete, enforceable system

configurations that can be applied

consistently across worker nodes. This

mapping enables systematic enforcement

while reducing the likelihood of gaps

caused by partial or overlapping

implementations.

4.2 Scope of Hardening Controls

The proposed hardening strategy

focuses on Kubernetes worker nodes and

includes controls spanning the following

domains:

a. Operating System Hardening:

Kernel parameters, filesystem

permissions, audit logging, access

control policies, and service

configurations.

b. Node-Level Kubernetes

Components:

Kubelet configuration files,

authentication and authorization

settings, and secure communication

with the control plane.

c. Runtime Environment Controls:

Container runtime configurations,

namespace isolation, and privilege

restrictions.

Controls related exclusively to

control plane components, such as the

API server or scheduler, are outside the

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 1, No. 01, August, pp. 156 - 168

162

scope of this study and are assumed to

follow established best practices.

4.3 Mapping CIS Benchmarks to Enforceable

Controls

Each CIS benchmark

recommendation is evaluated to

determine whether it can be enforced at

the Linux operating system level, the

Kubernetes configuration level, or both.

Controls are categorized into three types:

a. Directly Enforceable Controls:

Recommendations that map directly

to Linux configurations, such as file

permissions, kernel parameters, and

service settings.

b. Conditionally Enforceable Controls:

Controls that require contextual

interpretation, such as audit logging

policies or runtime configurations

that depend on workload

characteristics.

c. Verification-Only Controls:

Recommendations that cannot be

enforced automatically but can be

continuously validated for

compliance.

Table I illustrates representative

examples of the control mapping strategy.

Table 1. Example Mapping of CIS Benchmark Controls to Linux Hardening Actions

CIS Recommendation Target Layer Linux Control Enforcement Method

Secure kubelet config file

permissions
Kubernetes Node

File ownership and

permissions

Configuration

management

Enable kernel address

space protection
OS Kernel sysctl parameters

Automated

enforcement

Enable audit logging OS Services auditd configuration
Policy-driven

deployment

Restrict SSH access OS Services sshd configuration
Automated

remediation

This mapping ensures that

security controls are applied using

mechanisms appropriate to their

execution layer while maintaining

alignment with benchmark requirements.

4.4 Hardening Strategy Design

The hardening strategy is

designed to balance security enforcement

with operational stability. Controls are

applied in a staged manner to minimize

disruption to running workloads. The

strategy distinguishes between static

controls, which can be enforced during

node provisioning, and dynamic controls,

which may be applied or updated while

nodes are in service.

Static controls include filesystem

permissions, kernel parameters, and

baseline service configurations. These

controls are typically enforced during

initial node setup or maintenance

windows. Dynamic controls, such as

audit logging policies or kubelet

configuration updates, are applied

incrementally with validation steps to

ensure node health is preserved.

To reduce the risk of unintended

service impact, each control is validated

against the following criteria:

a. Compatibility with Kubernetes node

requirements

b. Impact on system performance

c. Reversibility in case of failure

Controls that fail validation are

flagged for manual review rather than

automatically enforced.

4.5 Security Drift Considerations

Configuration drift is a common

challenge in long-lived Kubernetes

clusters, particularly in environments

with frequent updates or manual

interventions. The proposed strategy

treats drift detection as a first-class

concern rather than a secondary

validation step. By maintaining a

declarative definition of expected system

state, deviations can be identified and

addressed promptly.

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 1, No. 01, August, pp. 156 - 168

163

Rather than reapplying all

controls indiscriminately, the framework

focuses on detecting meaningful

deviations that affect security posture.

This approach minimizes unnecessary

configuration changes and reduces the

risk of instability caused by repetitive

enforcement actions.

5. AUTOMATION FRAMEWORK

DESIGN

Figure 5. Automation Framework Enforcement Workflow

5.1 Design Principles

The automation framework is

designed to enforce and maintain security

hardening controls on Kubernetes worker

nodes in a consistent and repeatable

manner. Rather than introducing

proprietary tooling, the framework

leverages established configuration

management and system administration

practices commonly used in enterprise

Linux environments. This design choice

reduces operational risk and facilitates

adoption in existing infrastructures.

The framework adheres to the

following principles:

a. Idempotency: Repeated executions

must not introduce unintended side

effects.

b. Minimal Disruption: Security

controls should be applied without

causing unnecessary node downtime

or workload interruption.

c. Auditability: All enforcement actions

must be observable and verifiable.

d. Extensibility: The framework should

support incremental addition of new

controls.

These principles guide the

implementation and execution of the

automation workflow.

5.2 Framework Architecture

The automation framework

follows a centralized orchestration model

in which security policies are defined

declaratively and enforced across worker

nodes through controlled execution.

Figure 1 illustrates the high-level

architecture of the framework.

At the core of the framework is a

policy definition layer that specifies the

desired security state of worker nodes.

This includes kernel parameters, service

configurations, file permissions, and

audit policies derived from CIS

benchmarks. An automation engine

applies these policies to target nodes

using secure communication channels.

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 1, No. 01, August, pp. 156 - 168

164

Worker nodes periodically report

compliance status, enabling centralized

visibility into enforcement outcomes and

deviations. This feedback loop supports

continuous monitoring while avoiding

constant reconfiguration of nodes.

5.3 Enforcement Workflow

The enforcement process follows

a structured, multi-stage workflow to

reduce operational risk. Each stage

performs a specific function within the

hardening lifecycle:

a. Baseline Assessment:

Worker nodes are scanned to

determine current compliance status

against defined policies. This step

establishes a baseline and identifies

deviations.

b. Controlled Remediation:

Non-compliant controls that are

deemed safe for automated

enforcement are remediated.

Controls with potential service

impact are flagged for manual

approval.

c. Post-Enforcement Validation:

Node health checks are performed to

verify that critical services, including

kubelet and container runtime

components, remain operational.

d. Compliance Verification:

Updated compliance status is

recorded and compared against the

desired state to confirm successful

enforcement.

This staged approach ensures

that security improvements do not

compromise node availability.

5.4 Drift Detection and Maintenance

Configuration drift is addressed

through periodic validation rather than

continuous re-enforcement. Worker

nodes are evaluated at defined intervals to

detect deviations from the desired

security state. Detected drift is classified

based on severity and potential impact.

Minor deviations, such as

modified file permissions, may be

remediated automatically. More

significant changes, including kernel

parameter modifications or service

reconfigurations, are logged for review.

This selective remediation approach

reduces unnecessary system changes and

minimizes operational instability.

5.5 Failure Handling and Recovery

Automation failures are an

expected risk in large-scale environments.

The framework includes safeguards to

prevent partial enforcement from leaving

nodes in an inconsistent state. Changes

are applied in discrete steps, with rollback

mechanisms available for critical

configurations.

If a node fails validation checks

following enforcement, the framework

can suspend further actions and alert

operators for intervention. This design

prevents cascading failures and ensures

that automation does not become a single

point of failure.

6. EXPERIMENTAL SETUP
6.1 Test Environment Overview

To evaluate the effectiveness and

operational impact of the proposed

automation framework, experiments

were conducted in a controlled

Kubernetes environment designed to

reflect common enterprise worker node

configurations. The evaluation

environment focuses on worker node

security and intentionally limits scope to

node-level controls to isolate the impact of

Linux hardening and CIS benchmark

enforcement.

The Kubernetes cluster used for

evaluation consists of a small number of

worker nodes sufficient to observe

enforcement behavior, configuration

drift, and operational stability. While the

cluster size does not represent large-scale

production deployments, it enables

repeatable testing and detailed

observation of enforcement outcomes.

6.2 Cluster Configuration

The experimental cluster includes

a single Kubernetes control plane and

multiple worker nodes running a Linux-

based operating system. Each worker

node hosts application workloads

deployed as containers and runs standard

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 1, No. 01, August, pp. 156 - 168

165

Kubernetes node components, including

the kubelet and container runtime.

The operating system

configuration reflects a typical enterprise

Linux environment, including:

a. Default kernel configurations prior to

hardening

b. Standard system services enabled for

remote administration and logging

c. Persistent storage and networking

components required for Kubernetes

operation

No additional security agents or

proprietary tools are installed on the

worker nodes beyond those required for

automation and compliance verification.

6.3 Benchmark Selection

The evaluation leverages publicly

available CIS benchmarks relevant to

Kubernetes worker nodes and Linux

operating systems. These benchmarks are

used as authoritative references for

defining the desired security state.

The selected benchmarks include:

a. CIS Kubernetes Benchmark (worker

node–related controls)

b. CIS Linux Benchmark applicable to

the operating system version under

test

Only controls that directly affect

worker node security are included.

Control plane–specific recommendations

are excluded to maintain focus on node-

level hardening.

6.4 Automation Tooling

Automation is implemented

using widely adopted configuration

management and scripting tools

commonly deployed in enterprise Linux

environments. These tools are responsible

for:

a. Applying system-level configuration

changes

b. Validating enforcement outcomes

c. Collecting compliance data

All automation actions are

executed using secure communication

channels and adhere to least privilege

principles. Automation tasks are designed

to be idempotent, ensuring that repeated

executions do not introduce unintended

changes.

7. EVALUATION AND RESULTS
7.1 Compliance Improvement Analysis

The primary objective of the

evaluation is to assess the effectiveness of

automation-driven hardening in

improving compliance with selected CIS

benchmark controls on Kubernetes

worker nodes. Compliance is measured

before and after the application of

automated hardening policies to capture

the impact of enforcement.

Baseline assessments indicate

that a subset of benchmark controls is not

satisfied in the default worker node

configuration. These non-compliant

controls are primarily related to operating

system–level settings, including kernel

parameters, file permissions, and audit

logging configurations. Following

automated enforcement, a significant

portion of these controls are remediated,

resulting in an observable increase in

overall compliance alignment.

Figure 2 illustrates the change in

benchmark compliance levels between

the baseline and post-hardening states.

The results demonstrate that automated

enforcement improves consistency across

worker nodes and reduces variability

caused by manual configuration

differences.

7.2 Classification of Remediated Controls

To better understand the nature

of the observed improvements,

remediated controls are grouped into

categories based on their enforcement

layer. The majority of remediated controls

fall within the operating system

hardening domain, including filesystem

protections and kernel parameter

configurations. A smaller subset relates to

node-level Kubernetes settings, such as

kubelet configuration permissions.

Table II summarizes the

distribution of remediated controls by

category. This classification highlights the

importance of addressing Linux

operating system security as a

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 1, No. 01, August, pp. 156 - 168

166

foundational element of Kubernetes

worker node protection.

Table 2. Distribution of Remediated CIS Controls by Category

Control Category Relative Impact

OS Kernel and Filesystem High

System Services and Logging Moderate

Kubernetes Node Configuration Moderate

Runtime Environment Limited

7.3 Operational Impact Assessment

An essential requirement of the

proposed framework is maintaining

cluster availability during security

enforcement. Throughout the evaluation,

worker node status and workload

execution are monitored to identify any

service disruptions attributable to

automation activities.

Observations indicate that

enforcement actions do not introduce

prolonged node unavailability.

Temporary configuration changes are

applied in a controlled manner, and node

health checks confirm continued

operation of critical services. No

persistent workload failures are observed

during the evaluation window.

Figure 3 presents a summary of

observed node availability during

enforcement phases, demonstrating that

security improvements can be achieved

without compromising operational

stability when automation is applied

judiciously.

7.4 Configuration Drift Reduction

Configuration drift is assessed by

comparing worker node configurations

over multiple evaluation cycles.

Automated validation identifies

deviations from the defined security

baseline, enabling targeted remediation

of affected controls. This approach

reduces the likelihood of long-term drift

caused by manual interventions or system

updates [29].

The evaluation shows that

automated drift detection improves

visibility into security posture changes

and supports timely remediation. This

capability is particularly valuable in

environments where worker nodes are

frequently updated or replaced.

7.5 Summary of Findings

The evaluation results indicate

that automation-driven enforcement of

CIS-aligned Linux hardening controls can

measurably improve security compliance

on Kubernetes worker nodes while

maintaining operational stability. These

findings support the feasibility of

integrating benchmark-based hardening

into routine Kubernetes operations.

8. DISCUSSION AND

LIMITATIONS

The evaluation results demonstrate

that automation-driven enforcement of CIS-

aligned Linux hardening controls can

improve the security posture of Kubernetes

worker nodes without introducing significant

operational disruption. By systematically

mapping benchmark recommendations to

enforceable operating system configurations,

the proposed framework addresses a

common gap between security guidelines and

practical implementation.

One key observation is that many

security improvements are achieved at the

operating system level rather than through

Kubernetes-specific configurations. This

finding reinforces the importance of host

security as a foundational layer for

containerized environments. Even when

Kubernetes components are configured

according to best practices, weaknesses in the

underlying Linux system can undermine

higher-level protections.

Despite these positive outcomes, the

proposed approach has several limitations.

First, the evaluation is conducted in a

controlled environment with a limited

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 1, No. 01, August, pp. 156 - 168

167

number of worker nodes. While this enables

detailed observation and repeatability, the

results may not fully capture the complexity

of large-scale production clusters with

heterogeneous workloads and infrastructure.

Second, the framework focuses on

static and configuration-based security

controls defined by CIS benchmarks. Runtime

threats, such as zero-day exploits and

advanced container escape techniques, are

outside the scope of this study [30].

Additional security mechanisms, including

runtime monitoring and behavioral analysis,

would be required to address such threats

comprehensively.

Finally, not all benchmark controls

are suitable for automated enforcement.

Certain controls require contextual judgment

or may conflict with application-specific

requirements. The framework mitigates this

risk by classifying controls based on

enforceability and impact, but some degree of

manual oversight remains necessary.

These limitations highlight

opportunities for future enhancements while

reinforcing the practical value of automation

for baseline security enforcement.

9. CONCLUSION AND FUTURE

WORK

This paper presents an automated

framework for securing Kubernetes worker

nodes through the enforcement of CIS

benchmark–aligned Linux hardening

controls. By integrating operating system

security with Kubernetes node

configurations, the proposed approach

improves compliance consistency and

reduces configuration drift without

compromising cluster availability.

The results of the evaluation indicate

that automation can effectively bridge the gap

between security recommendations and

operational practice. Rather than relying on

manual hardening efforts, organizations can

leverage automation to maintain a consistent

security baseline across dynamic Kubernetes

environments.

Future work will focus on extending

the framework to incorporate runtime

security controls and continuous threat

detection mechanisms. Additional evaluation

in larger and more diverse cluster

environments would provide further insight

into scalability and performance tradeoffs.

Integrating admission control policies and

container image security assessments

represents another promising direction for

expanding the scope of automated security

enforcement.

REFERENCES

[1] Kubernetes Documentation, Kubernetes Components. Cloud Native Computing Foundation, 2024.

[2] S. B. Mohan and R. Buyya, “Secure containerized applications in cloud environments,” IEEE Cloud Comput., vol. 6,

no. 4, pp. 32–41, 2019.

[3] C. Pahl, “Containerization and the paas cloud,” IEEE Cloud Comput., vol. 2, no. 3, pp. 24–31, 2015.

[4] Open Policy Agent, Policy-Based Control for Cloud Native Environments. OPA Documentation, 2023.

[5] IEEE Standards Association, “IEEE Standard for Security in Cloud Computing,” IEEE Std 2302-2021, 2021.

[6] Cloud Native Security Conference Proceedings, “Advances in Kubernetes Security,” CNCF, 2022.

[7] Kubernetes Documentation, Security Best Practices. Cloud Native Computing Foundation, 2024.

[8] CNCF, “Cloud Native Security Whitepaper,” 2022.

[9] Kubernetes Documentation, Kubelet Configuration. Cloud Native Computing Foundation, 2024.

[10] National Institute of Standards and Technology, Application Container Security Guid. NIST SP 800-190, 2017.

[11] A. Shankar et al., “Security challenges in container-based virtualization,” IEEE Int. Conf. Cloud Comput., pp. 1–8, 2019.

[12] Linux Foundation, Linux Security Modules: SELinux and AppArmor. Linux Foundation Documentation, 2023.

[13] R. Richardson and M. North, “Ransomware and infrastructure misconfigurations,” IEEE Secur. Priv., vol. 18, no. 3,

pp. 78–82, 2020.

[14] HashiCorp, Infrastructure as Code Security. HashiCorp Whitepaper, 2023.

[15] Center for Internet Security, CIS Kubernetes Benchmark, CIS. USA: East Greenbush, NY, 2023.

[16] Center for Internet Security, CIS Benchmark for Linux, CIS. USA: East Greenbush, NY, 2023.

[17] National Institute of Standards and Technology, Guide to General Server Security. NIST SP 800-123, 2008.

[18] OWASP Foundation, OWASP Kubernetes Top Ten. OWASP Project Documentation, 2023.

The Eastasouth Journal of Information System and Computer Science (ESISCS) 

Vol. 1, No. 01, August, pp. 156 - 168

168

[19] Docker Inc, Docker Security. Docker Documentation, 2023.

[20] Amazon Web Services, Security Best Practices for Kubernetes. AWS Whitepaper, 2023.

[21] S. Zanero, “Monitoring and protecting containers at runtime,” IEEE Secur. Priv., vol. 17, no. 5, pp. 72–76, 2019.

[22] A. P. Silva et al, “Evaluating container runtime isolation mechanisms,” IEEE Trans. Cloud Comput., vol. 10, no. 1, pp.

215–228, 2022.

[23] National Institute of Standards and Technology, Security and Privacy Controls for Information Systems and

Organizations, NIST SP 80. 2020.

[24] Red Hat, Securing Kubernetes Clusters. Red Hat Product Documentation, 2023.

[25] Google Cloud, Harden Your Kubernetes Cluster. Google Cloud Architecture Center, 2023.

[26] Microsoft Azure, Kubernetes Security Best Practices. Microsoft Learn, 2023.

[27] B. Schneier, Applied Cryptography, 2nd ed. New York, NY, USA: USA: Wiley, 1996.

[28] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov, “Microservices: The journey so far and challenges

ahead,” IEEE Softw., vol. 35, no. 3, pp. 24–35, 2018.

[29] J. Lewis and M. Fowler, “Microservices: a definition of this new architectural term,” MartinFowler. com, vol. 25, no.

14–26, p. 12, 2014.

[30] L. Bilge and T. Dumitraş, “Before we knew it: an empirical study of zero-day attacks in the real world,” in Proceedings

of the 2012 ACM conference on Computer and communications security, 2012, pp. 833–844.

