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Securing Kubernetes worker nodes remains a persistent challenge in
enterprise environments due to configuration drift, inconsistent
operating system hardening, and limited visibility into runtime
security posture. While the Center for Internet Security (CIS) provides
benchmark recommendations for Kubernetes and Linux systems,
manual enforcement of these controls is error-prone and difficult to
sustain at scale. This paper presents an automated approach for
hardening Kubernetes worker nodes by integrating CIS benchmark
compliance with Linux security controls using configuration
management automation. The proposed framework focuses on
repeatable enforcement, continuous compliance validation, and
operational stability. We describe the system architecture, control
mapping strategy, and automation workflow, and evaluate its impact
on configuration compliance and operational availability in a
controlled Kubernetes environment. Results demonstrate measurable
improvements in benchmark compliance while maintaining cluster
stability, highlighting the feasibility of automation-driven security
hardening for Kubernetes worker nodes.
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1. INTRODUCTION

Kubernetes has become the de facto
orchestration in

platform for container

seeking lateral movement or
escalation within a cluster [9]-[11].

Industry guidelines such as the
Center for Internet Security (CIS) Benchmarks

privilege

enterprise environments, enabling scalable
deployment of cloud-native applications
across on-premise and hybrid infrastructures
[1]-[6]. While Kubernetes provides built-in
mechanisms  for  scheduling,
discovery, and fault tolerance, the security of

service

the underlying worker nodes remains a
critical and frequently underestimated
concern [7], [8]. Worker nodes host
application workloads, container runtimes,
and node-level services such as kubelet,
making them a high-value target for attackers

provide prescriptive recommendations for
securing both Kubernetes components and
Linux operating systems [12]. However, in
practice, these

consistently worker
challenging. Enterprise clusters often suffer
from configuration drift due to manual
changes, inconsistent patching practices, and

enforcing benchmarks

across nodes is

variations in node provisioning workflows
[13], [14]. As clusters scale, manual hardening
becomes error-prone and operationally
unsustainable, increasing the risk of
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misconfigurations that weaken the overall
security posture [15]-[17].

Automation is widely recognized as a
key enabler for scalable infrastructure
management, yet its application to
Kubernetes worker node hardening is often
fragmented [18]. Organizations may apply
CIS benchmarks to Kubernetes control plane
components while leaving operating system—
level controls partially enforced or
unmanaged [19], [20]. This gap creates a
layered security weakness where compliance
at the orchestration layer does not guarantee
protection at the host operating system layer.

This paper presents an automated
framework for securing Kubernetes worker
nodes by integrating CIS benchmark
recommendations with Linux operating
system hardening controls. The proposed
approach emphasizes repeatable
enforcement, continuous compliance
verification, and minimal operational
disruption. Rather than introducing new
security =~ mechanisms, the framework
systematically maps benchmark controls to
enforceable Linux configurations and applies
them using automation to reduce human
error and configuration drift.

Lin nel
N ck
'

The primary contributions of this
paper are as follows:

1. A structured analysis of Kubernetes
worker node attack surfaces and their
relationship to Linux operating
system configurations.

2. A control-mapping strategy that
aligns CIS Kubernetes and Linux
benchmarks with enforceable system-
level hardening actions.

3. An automation-driven framework for
applying, validating, and
maintaining security controls while
preserving cluster availability.

The remainder of this paper is
organized as follows. Section II reviews
relevant background concepts and related
work. Section III defines the threat model and
problem scope. Section IV details the control
mapping and hardening strategy. Section V
describes the automation framework. Section
VI outlines the experimental setup, followed
by evaluation results in Section VII. Section
VIII discusses limitations and operational
considerations, and Section IX concludes the
paper with directions for future research.
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Figure 1. Kubernetes Worker Node Architecture and Attack Surface
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2. BACKGROUND AND
RELATED WORK

2.1 Kubernetes Worker Node Architecture

A Kubernetes worker node is
responsible for executing application
workloads in the form of containers [21].
Each worker node typically consists of a
Linux operating system, a container
runtime (such as containerd or CRI-O),
the kubelet agent, and supporting
networking and storage components. The
kubelet acts as the primary interface
between the Kubernetes control plane and
the node, managing pod lifecycle
operations and reporting node status.

Because worker nodes directly
host application containers, they expose
multiple attack surfaces, including the
operating system kernel, filesystem,
network stack, container runtime
interfaces, and node-level configuration
files [22]. A compromise at the worker
node level can potentially lead to
container breakout, unauthorized access
to secrets, or lateral movement across the
cluster. As a result, securing worker
nodes is essential for maintaining cluster
integrity = and  protecting  hosted
workloads.

2.2 CIS Benchmarks for Kubernetes and

Linux

The Center for Internet Security
publishes  benchmarks that define
security best practices for a wide range of
technologies, including Kubernetes and
Linux operating systems. The CIS
Kubernetes Benchmark provides
recommendations for securing cluster
components such as the API server,
controller manager, scheduler, and
kubelet. Similarly, CIS Linux Benchmarks
focus on operating system-level controls
such as filesystem permissions, kernel
parameters, audit logging, and access
control mechanisms.

While these benchmarks are
comprehensive, they are primarily
designed as compliance guidelines rather
than operational frameworks. Many
controls require contextual interpretation
and careful enforcement to avoid
disrupting system functionality. In
Kubernetes environments, this challenge
is amplified by the dynamic nature of
nodes and workloads, where nodes may
be frequently added, removed, or
reconfigured.
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Figure 2. CIS Benchmarks Coverage for Kubernetes Worker Nodes
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2.3

24

Limitations
Approaches

Manual implementation of CIS
benchmarks is common in small or static

of Manual Hardening

environments but does not scale

effectively in Kubernetes
deployments. Manual hardening
introduces risks, including
inconsistent enforcement across nodes,
delayed
misconfigurations,
likelihood of human error. Additionally,
manual processes make it difficult to
detect configuration drift over time,
with
frequent system updates or automated
node provisioning.

Prior studies and industry
reports  highlight  that  security
misconfigurations remain a leading cause
of infrastructure breaches, often resulting
from incomplete or outdated hardening
practices. These findings underscore the

enterprise
several

remediation of

and increased

particularly in  environments

need for automated mechanisms that can
enforce security controls consistently
while adapting to operational changes
[23].

Related Work

Existing research on Kubernetes
security has primarily focused on
network policies, runtime container
security, and access control mechanisms.
While these studies address important
aspects of cluster security, fewer works
explicitly examine the integration of
operating system hardening with
Kubernetes worker node security. Some
approaches  rely on  immutable
infrastructure or specialized security
agents, which may introduce additional
complexity or performance overhead
[24]-[26].

In contrast, this paper focuses on
leveraging established benchmarks and
widely adopted automation techniques to
improve worker node security in a
pragmatic and repeatable manner. By

aligning CIS recommendations with
enforceable  Linux  controls  and
automating  their  application, the

3.1

proposed framework aims to bridge the
gap between security guidelines and
operational practice.

3. THREAT MODEL AND

PROBLEM DEFINITION
Threat Model for Kubernetes Worker
Nodes
This work focuses on security
threats targeting Kubernetes worker
nodes, which

execution layer within a cluster. The

represent a critical
threat model assumes an adversary who
has obtained an initial foothold through
attack such as
compromised images,

common vectors
container
vulnerable applications, exposed services,
or stolen credentials. From this position,
the attacker attempts to
privileges, access sensitive resources, or
move laterally across the cluster.

Worker nodes present multiple

escalate

attack surfaces due to their layered
architecture. At the operating system
level, vulnerabilities in the Linux kernel,
misconfigured system services, weak file
permissions, and insecure kernel
parameters can be exploited to gain
elevated privileges. At the container
runtime layer, improper isolation
between containers and the host may
allow container escape attacks. The
kubelet service, which operates with
elevated privileges on the node, is another
critical component that can be abused if
improperly secured.

This paper assumes that the
Kubernetes control plane is operational
and protected according to standard best
practices.
limited to worker nodes, as these systems
directly host application workloads and

are more frequently exposed to untrusted

The focus is intentionally

code execution. Attacks on worker nodes
can undermine higher-level Kubernetes
security mechanisms, making node-level
hardening a foundational requirement for
cluster security.
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Figure 3. Worker Node Attack Progression: Container Compromise to Lateral Movement

3.2 Problem Definition

Despite the availability of
detailed CIS benchmarks for both Linux

operating systems and Kubernetes
components, enforcing these
recommendations consistently across

worker nodes remains a challenge in
practice. Many organizations apply
security controls during initial node
provisioning but fail to maintain them
over time. Changes introduced by system
updates, emergency fixes, or manual
interventions often lead to configuration
drift that is difficult to detect and
remediate.

Manual hardening approaches
do not scale well in dynamic Kubernetes
environments, where worker nodes may
be frequently added or replaced.
Furthermore, partial implementation of
benchmarks—such as securing
Kubernetes  configurations  without
corresponding Linux hardening —creates
a false sense of security while leaving
critical vulnerabilities unaddressed.

The core problem addressed in
this paper is the lack of a repeatable,
automated mechanism to enforce and
maintain CIS-aligned security controls on

3.3

worker nodes without

negatively impacting cluster availability.

Specifically, there is a need to understand

how benchmark recommendations can be

enforceable  Linux

configurations and applied at scale in a

way that balances security, operational

stability, and maintainability [27].

Design Goals

Based on the identified threats
and operational challenges, this work

defines the following design goals [28]:

1. Consistency: Ensure that security
controls are applied uniformly across
all worker nodes.

2. Automation: Reduce
manual intervention by enforcing

Kubernetes

translated  into

reliance on

hardening controls through
automated mechanisms.
3. Auditability: Enable continuous

verification of compliance with CIS
benchmarks.

4. Operational Stability: Apply
security controls without introducing
unacceptable node downtime or
workload disruption.

5. Maintainability: Support ongoing
updates and configuration changes
while minimizing security drift.
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CONTROL MAPPING AND
HARDENING STRATEGY

These design goals guide the development of 4,
the hardening and automation framework
presented in the following sections.

mark
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Figure 4. Control Mapping & Automation Enforcement

4.1 Rationale for Control Mapping

CIS
prescriptive
securing both Kubernetes components
and Linux operating systems; however,
they are published as separate documents
with limited guidance on cross-layer

benchmarks provide
recommendations for

4.2

while reducing the likelihood of gaps

caused by partial or

implementations.

Scope of Hardening Controls
The proposed hardening strategy

focuses on Kubernetes worker nodes and

includes controls spanning the following

overlapping

enforcement. In Kubernetes worker domains:
nodes, this separation introduces a. Operating System  Hardening:
ambiguity = regarding  responsibility Kernel  parameters, filesystem
boundaries between the orchestration permissions, audit logging, access
layer and the host operating system. As a control  policies, and  service
result, security controls may be configurations.
implemented redundantly, b. Node-Level Kubernetes
inconsistently, or not at all. Components:

To address this challenge, this Kubelet configuration files,
work adopts a control mapping approach authentication and authorization

that explicitly links CIS Kubernetes
benchmark recommendations to
corresponding Linux operating system
hardening controls. The objective is to
translate abstract security requirements
into  concrete, enforceable system
configurations that can be applied
consistently across worker nodes. This

mapping enables systematic enforcement

settings, and secure communication
with the control plane.
c¢. Runtime Environment Controls:
runtime configurations,
namespace isolation, and privilege
restrictions.
Controls related exclusively to
control plane components, such as the

API server or scheduler, are outside the

Container
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4.3

4.4

scope of this study and are assumed to
follow established best practices.
Mapping CIS Benchmarks to Enforceable
Controls
Each CIS
recommendation is  evaluated to
determine whether it can be enforced at
the Linux operating system level, the
Kubernetes configuration level, or both.
Controls are categorized into three types:
a. Directly Enforceable Controls:
Recommendations that map directly
to Linux configurations, such as file
permissions, kernel parameters, and
service settings.

benchmark

b. Conditionally Enforceable Controls:
that require contextual
interpretation, such as audit logging
policies or runtime configurations

Controls

that depend on workload
characteristics.
c. Verification-Only Controls:

Recommendations that cannot be
enforced automatically but can be
continuously validated for
compliance.

Table I illustrates representative

examples of the control mapping strategy.

Table 1. Example Mapping of CIS Benchmark Controls to Linux Hardening Actions

CIS Recommendation Target Layer Linux Control Enforcement Method
Secure kubellet. config file Kubernetes Node File owm?rslhip and Configuration
permissions permissions management
Enable kernel address Automated
. OS Kernel sysctl parameters
space protection enforcement

Policy-driven

Enable audit logging OS Services auditd configuration deployment
Aut ted
Restrict SSH access OS Services sshd configuration » on.la .e
remediation
This mapping ensures that incrementally with validation steps to
security controls are applied using ensure node health is preserved.
mechanisms  appropriate to their To reduce the risk of unintended
execution layer while maintaining service impact, each control is validated

alignment with benchmark requirements.
Hardening Strategy Design

The hardening strategy is
designed to balance security enforcement
with operational stability. Controls are
applied in a staged manner to minimize
disruption to running workloads. The
strategy distinguishes between static
controls, which can be enforced during
node provisioning, and dynamic controls,
which may be applied or updated while
nodes are in service.

Static controls include filesystem
kernel parameters, and
baseline service configurations. These
controls are typically enforced during
initial setup or
windows. Dynamic controls, such as
logging policies or kubelet
configuration updates, are applied

permissions,

node maintenance

audit

4.5

against the following criteria:
a. Compatibility with Kubernetes node
requirements

b. Impact on system performance

c. Reversibility in case of failure
Controls that fail validation are

flagged for manual review rather than

automatically enforced.

Security Drift Considerations
Configuration drift is a common

challenge in long-lived Kubernetes

clusters, particularly in environments

with frequent updates or

interventions. The proposed strategy

treats drift detection as a first-class

concern rather

validation

manual

than a secondary
step. By maintaining a
declarative definition of expected system
state, deviations can be identified and

addressed promptly.
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Rather than reapplying all risk of instability caused by repetitive
controls indiscriminately, the framework enforcement actions.
focuses on detecting  meaningful

5.1

deviations that affect security posture.
This approach minimizes unnecessary
configuration changes and reduces the

Controlled BRemediation

Post-Enforcenment Validation

5. AUTOMATION FRAMEWORK
DESIGN

Deviation ldentification

Baseline Assessment

CompliancesVverification

Figure 5. Automation Framework Enforcement Workflow

Design Principles

The automation framework is
designed to enforce and maintain security
hardening controls on Kubernetes worker
nodes in a consistent and repeatable

manner. Rather than introducing
proprietary tooling, the framework
leverages  established  configuration

management and system administration

practices commonly used in enterprise

Linux environments. This design choice

reduces operational risk and facilitates

adoption in existing infrastructures.
The framework adheres to the
following principles:

a. Idempotency: Repeated executions
must not introduce unintended side
effects.

b. Minimal Disruption:  Security
controls should be applied without
causing unnecessary node downtime
or workload interruption.

c. Auditability: All enforcement actions
must be observable and verifiable.

5.2

d. Extensibility: The framework should
support incremental addition of new
controls.

These principles guide the
implementation and execution of the
automation workflow.

Framework Architecture

The framework
follows a centralized orchestration model
in which security policies are defined
declaratively and enforced across worker
nodes through controlled execution.
Figure 1 the high-level
architecture of the framework.

automation

illustrates

At the core of the framework is a
policy definition layer that specifies the
desired security state of worker nodes.
This includes kernel parameters, service

configurations, file permissions, and
audit policies derived from CIS
benchmarks. An automation engine

applies these policies to target nodes
using secure communication channels.
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5.3

54

Worker nodes periodically report
compliance status, enabling centralized
visibility into enforcement outcomes and
deviations. This feedback loop supports
continuous monitoring while avoiding
constant reconfiguration of nodes.
Enforcement Workflow

The enforcement process follows
a structured, multi-stage workflow to
reduce operational risk. Each stage
performs a specific function within the
hardening lifecycle:

a. Baseline
Worker
determine current compliance status
against defined policies. This step
establishes a baseline and identifies

Assessment:

nodes are scanned to

deviations.

b. Controlled Remediation:
Non-compliant controls that are
deemed safe for automated
enforcement are remediated.
Controls with potential service
impact are flagged for manual
approval.

c. Post-Enforcement Validation:

Node health checks are performed to
verify that critical services, including
kubelet and container
components, remain operational.

d. Compliance Verification:
Updated
recorded and compared against the
desired state to confirm successful

runtime

compliance  status is

enforcement.
This staged approach ensures
that security improvements do not

compromise node availability.
Drift Detection and Maintenance
Configuration drift is addressed
through periodic validation rather than
Worker
nodes are evaluated at defined intervals to
detect the desired
security state. Detected drift is classified

continuous  re-enforcement.

deviations from

based on severity and potential impact.

Minor deviations, such as
modified file permissions, may be
remediated automatically. More

significant changes, including kernel

parameter modifications or service

5.5

6.1

6.2

reconfigurations, are logged for review.
This selective remediation approach
reduces unnecessary system changes and
minimizes operational instability.
Failure Handling and Recovery

Automation failures are an
expected risk in large-scale environments.
The framework includes safeguards to
prevent partial enforcement from leaving
nodes in an inconsistent state. Changes
are applied in discrete steps, with rollback
mechanisms  available for
configurations.

If a node fails validation checks

critical

following enforcement, the framework
can suspend further actions and alert
operators for intervention. This design
prevents cascading failures and ensures
that automation does not become a single
point of failure.

6. EXPERIMENTAL SETUP
Test Environment Overview

To evaluate the effectiveness and
operational impact of the proposed
automation framework, experiments
were conducted in a controlled
Kubernetes environment designed to
reflect common enterprise worker node
configurations. The evaluation
environment focuses on worker node
security and intentionally limits scope to
node-level controls to isolate the impact of
Linux hardening and CIS benchmark
enforcement.

The Kubernetes cluster used for
evaluation consists of a small number of
worker nodes sufficient to observe
enforcement behavior, configuration
drift, and operational stability. While the
cluster size does not represent large-scale
production deployments, it enables
repeatable  testing detailed
observation of enforcement outcomes.
Cluster Configuration

The experimental cluster includes
a single Kubernetes control plane and
multiple worker nodes running a Linux-
based operating system. Each worker
hosts  application
deployed as containers and runs standard

and

node workloads
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6.3

6.4

Kubernetes node components, including
the kubelet and container runtime.
The operating

configuration reflects a typical enterprise

Linux environment, including:

a. Default kernel configurations prior to
hardening

b. Standard system services enabled for
remote administration and logging

c. DPersistent storage and networking

system

components required for Kubernetes
operation
No additional security agents or
proprietary tools are installed on the
worker nodes beyond those required for
automation and compliance verification.

Benchmark Selection

The evaluation leverages publicly
available CIS benchmarks relevant to

Kubernetes worker nodes and Linux

operating systems. These benchmarks are

used as authoritative references for
defining the desired security state.
The selected benchmarks include:

a. CIS Kubernetes Benchmark (worker
node-related controls)

b. CIS Linux Benchmark applicable to
the operating system version under
test

Only controls that directly affect
worker node security are included.

Control plane-specific recommendations

are excluded to maintain focus on node-

level hardening.

Automation Tooling

Automation is implemented
using widely adopted configuration
management and  scripting  tools

commonly deployed in enterprise Linux
environments. These tools are responsible
for:
a. Applying system-level configuration

changes

Validating enforcement outcomes
c. Collecting compliance data

All  automation actions are

executed using secure communication
channels and adhere to least privilege
principles. Automation tasks are designed
to be idempotent, ensuring that repeated

7.1

7.2

executions do not introduce unintended
changes.

7. EVALUATION AND RESULTS
Compliance Improvement Analysis

The primary objective of the
evaluation is to assess the effectiveness of
automation-driven hardening in
improving compliance with selected CIS
benchmark controls on Kubernetes
worker nodes. Compliance is measured
before and after the application of
automated hardening policies to capture
the impact of enforcement.

Baseline assessments
that a subset of benchmark controls is not
satisfied in the default worker node
configuration. ~These  non-compliant
controls are primarily related to operating
system-level settings, including kernel
parameters, file permissions, and audit
logging  configurations. Following
automated enforcement, a significant
portion of these controls are remediated,
resulting in an observable increase in
overall compliance alignment.

Figure 2 illustrates the change in
benchmark compliance levels between
the baseline and post-hardening states.
The results demonstrate that automated
enforcement improves consistency across

indicate

worker nodes and reduces variability
caused by
differences.
Classification of Remediated Controls
To better understand the nature
of the
remediated controls are grouped into
categories based on their enforcement
layer. The majority of remediated controls
fall within the operating system
hardening domain, including filesystem
protections parameter
configurations. A smaller subset relates to
node-level Kubernetes settings, such as

manual  configuration

observed improvements,

and kernel

kubelet configuration permissions.

Table II  summarizes the
distribution of remediated controls by
category. This classification highlights the
importance  of Linux

operating

addressing

system security as a
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foundational element of Kubernetes
worker node protection.

Table 2. Distribution of Remediated CIS Controls by Category

Control Category Relative Impact
OS Kernel and Filesystem High
System Services and Logging Moderate
Kubernetes Node Configuration Moderate
Runtime Environment Limited

7.3 Operational Impact Assessment

An essential requirement of the
proposed framework is maintaining
cluster availability —during security
enforcement. Throughout the evaluation,
worker node status and workload
execution are monitored to identify any
service disruptions attributable to
automation activities.

Observations  indicate  that
enforcement actions do not introduce
prolonged node unavailability.
Temporary configuration changes are
applied in a controlled manner, and node
health  checks confirm  continued
operation of critical services. No
persistent workload failures are observed
during the evaluation window.

Figure 3 presents a summary of
observed node availability during
enforcement phases, demonstrating that
security improvements can be achieved
without  compromising  operational
stability when automation is applied
judiciously.

7.4 Configuration Drift Reduction

Configuration drift is assessed by
comparing worker node configurations
over multiple evaluation  cycles.
Automated validation identifies
deviations from the defined security
baseline, enabling targeted remediation
of affected controls. This approach
reduces the likelihood of long-term drift
caused by manual interventions or system
updates [29].

The evaluation shows that
automated drift detection improves
visibility into security posture changes
and supports timely remediation. This
capability is particularly valuable in

environments where worker nodes are
frequently updated or replaced.
7.5 Summary of Findings

The evaluation results indicate
that automation-driven enforcement of
CIS-aligned Linux hardening controls can
measurably improve security compliance
on Kubernetes worker nodes while
maintaining operational stability. These
findings support the feasibility of
integrating benchmark-based hardening
into routine Kubernetes operations.

8. DISCUSSION AND
LIMITATIONS

The evaluation results demonstrate
that automation-driven enforcement of CIS-
aligned Linux hardening controls can
improve the security posture of Kubernetes
worker nodes without introducing significant
operational disruption. By systematically
mapping benchmark recommendations to
enforceable operating system configurations,
the proposed framework addresses a
common gap between security guidelines and
practical implementation.

One key observation is that many
security improvements are achieved at the
operating system level rather than through
Kubernetes-specific ~ configurations.  This
finding reinforces the importance of host
security as a foundational layer for
containerized environments. Even when
Kubernetes components are configured
according to best practices, weaknesses in the
underlying Linux system can undermine
higher-level protections.

Despite these positive outcomes, the
proposed approach has several limitations.
First, the evaluation is conducted in a
controlled environment with a limited
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number of worker nodes. While this enables
detailed observation and repeatability, the
results may not fully capture the complexity
of large-scale production clusters with
heterogeneous workloads and infrastructure.

Second, the framework focuses on
static and configuration-based security
controls defined by CIS benchmarks. Runtime
threats, such as zero-day exploits and
advanced container escape techniques, are
outside the scope of this study [30].
Additional security mechanisms, including
runtime monitoring and behavioral analysis,
would be required to address such threats
comprehensively.

Finally, not all benchmark controls
are suitable for automated enforcement.
Certain controls require contextual judgment
or may conflict with application-specific
requirements. The framework mitigates this
risk by classifying controls based on
enforceability and impact, but some degree of
manual oversight remains necessary.

These limitations highlight
opportunities for future enhancements while
reinforcing the practical value of automation
for baseline security enforcement.

9. CONCLUSION AND FUTURE
WORK

This paper presents an automated
framework for securing Kubernetes worker
nodes through the enforcement of CIS
benchmark-aligned Linux hardening
controls. By integrating operating system
security with Kubernetes node
configurations, the proposed approach
improves compliance consistency and
reduces  configuration  drift  without
compromising cluster availability.

The results of the evaluation indicate
that automation can effectively bridge the gap
between security recommendations and
operational practice. Rather than relying on
manual hardening efforts, organizations can
leverage automation to maintain a consistent
security baseline across dynamic Kubernetes
environments.

Future work will focus on extending
the framework to incorporate runtime
security controls and continuous threat
detection mechanisms. Additional evaluation
in larger and more diverse cluster
environments would provide further insight
into scalability and performance tradeoffs.
Integrating admission control policies and
container image security assessments
represents another promising direction for
expanding the scope of automated security
enforcement.
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