Artificial Intelligence in Precision Medicine: Enhancing Chronic Disease Management and Genomic Drug Discovery through Predictive Modeling

Main Article Content

Antu Roy
Md. Ashik
Nirupam Khan
Delwar Karim
Amit Kumar

Abstract

This paper explores the transformative role of Explainable Artificial Intelligence (XAI) in precision medicine, focusing on its application in chronic disease management and genomic drug discovery. Through two detailed workflow diagrams, the study highlights the integration of XAI within the clinical decision-making pipeline and biomedical research domains. Figure 1 illustrates a comprehensive process encompassing data acquisition, preprocessing, predictive modeling, and clinician feedback, all underpinned by XAI techniques such as SHAP, LIME, and attention mechanisms. This workflow enhances trust and transparency in AI-driven predictions, empowering clinicians to interpret and act on machine-generated insights. Figure 2 extends this understanding by mapping XAI applications to chronic disease monitoring and genomic analysis. In chronic care, XAI enables risk stratification and personalized interventions, while in genomic drug discovery, it facilitates the identification of potential targets through interpretable machine learning models. Together, these figures underscore XAI’s critical role in translating complex data into actionable healthcare outcomes. By promoting accountability, user trust, and informed decision-making, XAI emerges as a cornerstone for the ethical and effective deployment of artificial intelligence in precision medicine. The paper concludes that integrating explainability into AI models is not only a technical necessity but also a fundamental step toward safer, smarter, and more inclusive healthcare systems.

Article Details

How to Cite
Roy, A., Ashik, M., Khan, N., Karim, D., & Kumar, A. (2025). Artificial Intelligence in Precision Medicine: Enhancing Chronic Disease Management and Genomic Drug Discovery through Predictive Modeling. The Eastasouth Journal of Information System and Computer Science, 3(01), 1–10. https://doi.org/10.58812/esiscs.v3i01.594
Section
Articles

References

F. S. Collins and H. Varmus, “A new initiative on precision medicine.,” N. Engl. J. Med., vol. 372, no. 9, pp. 793–795, Feb. 2015, doi: 10.1056/NEJMp1500523.

S. Islam, E. Hossain, M. S. Rahman, M. M. Rahman, S. I. Khan, and A. A. M. Ashik, “Digital Transformation in SMEs: Unlocking Competitive Advantage through Business Intelligence and Data Analytics Adoption,” vol. 5, no. 6, pp. 177–186, 2023, doi: https://doi.org/10.32996/jbms.2023.5.6.14.

S. I. Khan, M. S. Rahman, A. A. M. Ashik, S. Islam, M. M. Rahman, and Hossain, “Big Data and Business Intelligence for Supply Chain Sustainability: Risk Mitigation and Green Optimization in the Digital Era,” Eur. J. Manag. Econ. Bus., vol. 1, no. 3, p. 23, 2024.

F. Doshi-Velez and B. Kim, “Towards A Rigorous Science of Interpretable Machine Learning,” no. Ml, pp. 1–13, 2017, [Online]. Available: http://arxiv.org/abs/1702.08608

M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why Should I Trust You?’: Explaining the Predictions of Any Classifier,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 1135–1144. doi: 10.1145/2939672.2939778.

E. Hossain, A. A. M. Ashik, M. M. Rahman, S. I. Khan, M. S. Rahman, and S. Islam, “Big data and migration forecasting: Predictive insights into displacement patterns triggered by climate change and armed conflict,” J. Comput. Sci. Technol. Stud., vol. 5, no. 4, pp. 265–274, 2023, doi: https://doi.org/10.32996/jcsts.2023.5.4.27.

S. Rahman, S. I. Khan, A. Al, M. Ashik, and E. Hossain, “Redefining Marketing and Management Strategies in Digital Age : Adapting to Consumer Behavior and Technological Disruption,” vol. 9, no. 4, pp. 1–16, 2024.

S. Rani, K. Das, F. M. Aminuzzaman, B. Y. Ayim, and N. Borodynko-Filas, “Harnessing the future: cutting-edge technologies for plant disease control,” J. Plant Prot. Res., vol. 63, pp. 387–398, 2023, doi: https://doi.org/10.24425/jppr.2023.147829.

A. Tanvir, J. Jo, and S. M. Park, “Targeting Glucose Metabolism: A Novel Therapeutic Approach for Parkinson’s Disease,” Cells, vol. 13, no. 22. 2024. doi: 10.3390/cells13221876.

E. Topol, “High-performance medicine: the convergence of human and artificial intelligence,” Nat. Med., vol. 25, Jan. 2019, doi: 10.1038/s41591-018-0300-7.

G. T. Alam et al., “AI-Driven Optimization of Domestic Timber Supply Chains to Enhance U.S. Economic Security,” J. Posthumanism, vol. 5, no. 1 SE-, pp. 1581–1605, Jan. 2025, doi: 10.63332/joph.v4i3.2083.

M. M. T. G. Manik et al., “AI-Driven Precision Medicine Leveraging Machine Learning and Big Data Analytics for Genomics-Based Drug Discovery,” J. Posthumanism, vol. 5, no. 1 SE-, pp. 1560–1580, Jan. 2025, doi: 10.63332/joph.v5i1.1993.

T. Ching et al., “Opportunities and obstacles for deep learning in biology and medicine,” J. R. Soc. Interface, vol. 15, no. 141, p. 20170387, Apr. 2018, doi: 10.1098/rsif.2017.0387.

U. Haldar et al., “AI-Driven Business Analytics for Economic Growth Leveraging Machine Learning and MIS for Data-Driven Decision-Making in the U.S. Economy,” J. Posthumanism, vol. 5, no. 4 SE-, pp. 932–957, Apr. 2025, doi: 10.63332/joph.v5i4.1178.

S. Hossain et al., “Big Data Analysis and prediction of COVID-2019 Epidemic Using Machine Learning Models in Healthcare Sector,” J. Ecohumanism, vol. 3, no. 8 SE-Articles, pp. 14468 – 14477, Nov. 2024, doi: 10.62754/joe.v3i8.6775.

S. Sultana et al., “A Comparative Review of Machine Learning Algorithms in Supermarket Sales Forecasting with Big Data ,” J. Ecohumanism, vol. 3, no. 8 SE-Articles, pp. 14457 – 14467, Nov. 2024, doi: 10.62754/joe.v3i8.6762.

M. Tofayel, G. Manik, M. M. Rahman, M. Moniruzzaman, and S. Islam, “The Future of Drug Discovery Utilizing Generative AI and Big Data Analytics for Accelerating Pharmaceutical Innovations,” vol. 3, no. 3, pp. 120–135, 2018.

S. Wachter, B. Mittelstadt, and L. Floridi, “Why a Right to Explanation of Automated Decision-Making Does Not Exist in the General Data Protection Regulation,” Int. Data Priv. Law, vol. 7, no. 2, pp. 76–99, May 2017, doi: 10.1093/idpl/ipx005.

M. Tofayel et al., “Leveraging Ai-Powered Predictive Analytics For Early Detection Of Chronic Diseases : A Data-Driven Approach To Personalized Medicine,” vol. 3, no. 3, pp. 269–288, 2021.

M. Tofayel et al., “Integrating Genomic Data And Machine Learning To Advance Precision Oncology And Targeted Cancer Therapies,” vol. 2, no. 2, pp. 219–243, 2022.

M. M. T. G. Manik, “Multi-Omics Integration with Machine Learning for Early Detection of Ischemic Stroke Through Biomarkers Discovery,” J. Ecohumanism, vol. 2, no. 2 SE-Articles, pp. 175 – 187, Jun. 2023, doi: 10.62754/joe.v2i2.6800.

J. Amann, A. Blasimme, E. Vayena, D. Frey, V. I. Madai, and the P. consortium, “Explainability for artificial intelligence in healthcare: a multidisciplinary perspective,” BMC Med. Inform. Decis. Mak., vol. 20, no. 1, p. 310, 2020, doi: 10.1186/s12911-020-01332-6.

R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep learning for healthcare: review, opportunities and challenges,” Brief. Bioinform., vol. 19, no. 6, pp. 1236–1246, Nov. 2018, doi: 10.1093/bib/bbx044.

S. M. Lundberg and S. I. Lee, “A unified approach to interpreting model predictions,” Adv. Neural Inf. Process. Syst., vol. 2017-Decem, no. Section 2, pp. 4766–4775, 2017.

A. Holzinger, C. Biemann, C. S. Pattichis, and D. B. Kell, “What do we need to build explainable AI systems for the medical domain? arXiv preprint arXiv:1712.09923,” 2017, doi: https://doi.org/10.48550/arXiv.1712.09923.

M. W. Libbrecht and W. S. Noble, “Machine learning applications in genetics and genomics,” Nat. Rev. Genet., vol. 16, no. 6, pp. 321–332, 2015, doi: 10.1038/nrg3920.

R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi, “A Survey of Methods for Explaining Black Box Models,” ACM Comput. Surv., vol. 51, no. 5, Aug. 2018, doi: 10.1145/3236009.

C. R. Barikdar et al., “Life Cycle Sustainability Assessment of Bio-Based and Recycled Materials in Eco-Construction Projects,” J. Ecohumanism, vol. 1, no. 2 SE-Articles, pp. 151 – 162, Jul. 2022, doi: 10.62754/joe.v1i2.6807.

A. Vaswani et al., “Attention is all you need,” Adv. Neural Inf. Process. Syst., vol. 2017-Decem, no. Nips, pp. 5999–6009, 2017.

A. Singh, S. Sengupta, and V. Lakshminarayanan, “Explainable Deep Learning Models in Medical Image Analysis,” Journal of Imaging, vol. 6, no. 6. 2020. doi: 10.3390/jimaging6060052.

I. J. Bulbul, Z. Zahir, A. Tanvir, and P. Alam, Parisha, “Comparative study of the antimicrobial, minimum inhibitory concentrations (MIC), cytotoxic and antioxidant activity of methanolic extract of different parts of Phyllanthus acidus (l.) Skeels (family: Euphorbiaceae),” World J. Pharm. Pharm. Sci., vol. 8, no. 1, pp. 12–57, 2018, doi: https://doi.org/10.20959/wjpps20191-10735.

K. Das, A. Tanvir, S. Rani, and F. M. Aminuzzaman, “Revolutionizing Agro-Food Waste Management: Real-Time Solutions through IoT and Big Data Integration.,” Voice Publ., vol. 15, no. 141, p. 111003, 2018, doi: 10.4236/vp.2025.111003.

J. Hassan et al., “Implementing MIS Solutions to Support the National Energy Dominance Strategy,” J. Posthumanism, vol. 5, no. 5 SE-, pp. 4343–4363, May 2025, doi: 10.63332/joph.v5i5.1908.

M. S. Islam et al., “Explainable AI in Healthcare: Leveraging Machine Learning and Knowledge Representation for Personalized Treatment Recommendations,” J. Posthumanism, vol. 5, no. 1 SE-, pp. 1541–1559, Jan. 2025, doi: 10.63332/joph.v5i1.1996.

F. Mahmud et al., “AI-Driven Cybersecurity in IT Project Management: Enhancing Threat Detection and Risk Mitigation,” J. Posthumanism, vol. 5, no. 4 SE-, pp. 23–44, Apr. 2025, doi: 10.63332/joph.v5i4.974.

M. E. Hossin et al., “Digital Transformation in the USA Leveraging AI and Business Analytics for IT Project Success in the Post-Pandemic Era,” J. Posthumanism, vol. 5, no. 4 SE-, pp. 958–976, Apr. 2025, doi: 10.63332/joph.v5i4.1180.

M. Hossain, F. Mahee, M. Tareq, M. Rasel, Z. Khandaker, and A. H. Abdulla, “Quantifying the Impact of Immersive Technologies: An Empirical Analysis of Augmented Reality & Virtual Reality in Bangladesh’s Tourism Sector,” Power Syst. Technol., vol. 49, pp. 1156–1177, May 2025, doi: 10.52783/pst.1884.

M. A. Goffer et al., “AI-Enhanced Cyber Threat Detection and Response Advancing National Security in Critical Infrastructure ,” J. Posthumanism, vol. 5, no. 3 SE-, pp. 1667–1689, Apr. 2025, doi: 10.63332/joph.v5i3.965.

A. Jovic, K. Brkić, and N. Bogunovic, A review of feature selection methods with applications. 2015. doi: 10.1109/MIPRO.2015.7160458.

O. Troyanskaya et al., “Missing value estimation methods for DNA microarrays.,” Bioinformatics, vol. 17, no. 6, pp. 520–525, Jun. 2001, doi: 10.1093/bioinformatics/17.6.520.

W. Samek, T. Wiegand, and K.-R. Müller, “Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models,” 2017, [Online]. Available: http://arxiv.org/abs/1708.08296

C. R. Barikdar et al., “MIS Frameworks for Monitoring and Enhancing U.S. Energy Infrastructure Resilience,” J. Posthumanism, vol. 5, no. 5 SE-, pp. 4327–4342, May 2025, doi: 10.63332/joph.v5i5.1907.

M. Moniruzzaman et al., “Big Data Strategies for Enhancing Transparency in U.S. Healthcare Pricing,” J. Posthumanism, vol. 5, no. 5 SE-, pp. 3744–3766, May 2025, doi: 10.63332/joph.v5i5.1813.

A. Miah, E. Rozario, and F. B. Khair, “" Harnessing Wearable Health Data And Deep Learning Algorithms For Real-Time Cardiovascular Disease Monitoring And Prevention ",” vol. 3, no. 3, pp. 326–349, 2019.

Mia Md Tofayel Gonee Manik, “Biotech-Driven Innovation in Drug Discovery: Strategic Models for Competitive Advantage in the Global Pharmaceutical Market,” J. Comput. Anal. Appl., vol. 28, no. 6 SE-Articles, pp. 41–47, Dec. 2020, [Online]. Available: https://eudoxuspress.com/index.php/pub/article/view/2874

M. Tofayel et al., “The Role Of Big Data In Combatting Antibiotic Resistance Predictive Models For Global Surveillance,” vol. 3, no. 3, pp. 361–378, 2020.