AI-Powered Quality Assurance and MIS Analytics: Building Resilient and Intelligent Digital Economies

Main Article Content

Shakila Sarker
Mashur Bin Mahmud Nihat

Abstract

Artificial intelligence (AI), predictive analytics, and management information systems (MIS) are all converging to remake U.S. companies into smart, adaptive ecosystems that can sustain economic resilience, cybersecurity, and software quality assurance (QA). This study synthesizes the empirical and conceptual findings of 20 peer-reviewed articles published between 2023 and 2025 to establish an integrated AI–MIS–QA Resilience Framework (AMQRF) that synthesizes automation, analytics, and governance in critical sectors such as IT, health, energy, and supply-chain infrastructure. The meta-synthesis reveals predictive QA with AI reduces software defect rates by 25–45%, MIS-based analytics increase operational visibility levels by 30–35%, and AI-driven cybersecurity models improve the accuracy of threat detection by up to 40%. All combined these flips enterprise resilience as an enterprise function of interconnected digital smartness and organizational learning. The study concludes by recommending a governance-aware architecture in which predictive QA, business analytics, and MIS co-evolve to facilitate sustainable competitiveness and national digital security.

Article Details

How to Cite
Sarker, S., & Nihat, M. B. M. (2025). AI-Powered Quality Assurance and MIS Analytics: Building Resilient and Intelligent Digital Economies. The Eastasouth Journal of Information System and Computer Science, 3(02), 179–190. https://doi.org/10.58812/esiscs.v3i02.767
Section
Articles

References

G. T. Alam, M. M. Bakhsh, N. Y. Nadia, and S. A. M. Islam, “Predictive Analytics in QA Automation:: Redefining Defect Prevention for US Enterprises,” J. Knowl. Learn. Sci. Technol. ISSN 2959-6386, vol. 4, no. 2, pp. 55–66, 2025, [Online]. Available: https://doi.org/10.60087/jklst.v4.n2.005

M. S. A. Joy, G. T. Alam, and M. M. Bakhsh, “Transforming QA Efficiency: Leveraging Predictive Analytics to Minimize Costs in Business-Critical Software Testing for the US Market,” J. Artif. Intell. Gen. Sci. ISSN3006-4023, vol. 7, no. 01, pp. 77–89, 2024, doi: 10.60087/jaigs.v7i01.297.

U. Haldar et al., “AI-Driven Business Analytics for Economic Growth Leveraging Machine Learning and MIS for Data-Driven Decision-Making in the U.S. Economy,” J. Posthumanism, vol. 5, no. 4 SE-, pp. 932–957, Apr. 2025, doi: 10.63332/joph.v5i4.1178.

M. H. Rahman, M. A. Siam, A. Shan-A-Alahi, and K. Bushra, “Integrating Artificial Intelligence and Data Science for Breakthroughs in Drug Development and Genetic Biomarker Discovery,” J. Posthumanism, vol. 5, no. 8, pp. 257–271, 2025, [Online]. Available: https://doi.org/10.63332/joph.v5i8.3157

F. Mahmud et al., “AI-Powered Workforce Analytics Forecasting Labor Market Trends and Skill Gaps for US Economic Competitiveness,” J. Comput. Sci. Technol. Stud., vol. 6, no. 5, pp. 265–277, 2024.

C. R. Barikdar et al., “MIS Frameworks for Monitoring and Enhancing U.S. Energy Infrastructure Resilience,” J. Posthumanism, vol. 5, no. 5 SE-, pp. 4327–4342, May 2025, doi: 10.63332/joph.v5i5.1907.

J. Hassan et al., “Implementing MIS Solutions to Support the National Energy Dominance Strategy,” J. Posthumanism, vol. 5, no. 5 SE-, pp. 4343–4363, May 2025, doi: 10.63332/joph.v5i5.1908.

R. M. Ahsan, B. Uddin, T. Hossen, and S. Das, “Resilient Intelligence: AI and MIS in the Cyber-Economic Era,” Eastasouth J. Inf. Syst. Comput. Sci., vol. 3, no. 02, pp. 151–163, 2025.

M. H. Rahman et al., “Harnessing big data and predictive analytics for early detection and cost optimization in cancer care,” J. Comput. Sci. Technol. Stud., vol. 6, no. 5, pp. 278–293, 2024.

I. Ahmed, M. A. U. H. Khan, M. A. Islam, A. Ahamed, M. A. Siam, and M. D. Z. Islam, “Utilizing AI to Enhance Renewable Energy Generation and Advanced Storage Technologies for Smart Energy Solutions,” in 2025 International Conference on Metaverse and Current Trends in Computing (ICMCTC), 2025, pp. 1–10. doi: 10.1109/ICMCTC62214.2025.11196325.

M. E. Hossin, “Harnessing Business Analytics in Management Information Systems to Foster Sustainable Economic Growth Through Smart Manufacturing and Industry 4.0,” Educ. Adm. Theory Pract., vol. 30, no. 10, pp. 730–739, 2024, doi: 10.53555/kuey.v30i10.9643.

Niropam Das, “The Strategic Impact of Business Intelligence Tools: A Review of Decision-Making and Ambidexterity,” Membr. Technol., no. 2023, pp. 542–553, 2025, doi: 10.52710/mt.307.

M. M. Bakhsh, G. T. Alam, and N. Y. Nadia, “Adapting Agile Methodologies to Incorporate Digital Twins in Sprint Planning, Backlog Refinement, and QA Validation,” J. Knowl. Learn. Sci. Technol. ISSN 2959-6386, vol. 4, no. 2, pp. 67–79, 2025, [Online]. Available: https://doi.org/10.60087/jklst.v4.n2.006

C. R. Barikdar et al., “Life Cycle Sustainability Assessment of Bio-Based and Recycled Materials in Eco-Construction Projects,” J. Ecohumanism, vol. 1, no. 2 SE-Articles, pp. 151 – 162, Jul. 2022, doi: 10.62754/joe.v1i2.6807.

H. Rahman, K. B. Siddiqa, S. Sultana, I. T. Ahsan, M. M. Anwar, and F. Hossain, “Next-Generation Software Quality Assurance: Integrating AI-Driven Predictive Analytics, Digital Twins, and Agile Methodologies for Transformative Research and Practice,” J. Comput. Sci. Technol. Stud., vol. 7, no. 9, pp. 453–463, 2025.

G. T. Alam et al., “AI-Driven Optimization of Domestic Timber Supply Chains to Enhance U.S. Economic Security,” J. Posthumanism, vol. 5, no. 1 SE-, pp. 1581–1605, Jan. 2025, doi: 10.63332/joph.v4i3.2083.

M. A. Miah et al., “Big Data Analytics for Enhancing Coal-Based Energy Production Amidst AI Infrastructure Growth,” J. Posthumanism, vol. 5, no. 5 SE-, pp. 5061–5080, Apr. 2025, doi: 10.63332/joph.v5i5.2087.

M. Moniruzzaman et al., “Big Data Strategies for Enhancing Transparency in U.S. Healthcare Pricing,” J. Posthumanism, vol. 5, no. 5 SE-, pp. 3744–3766, May 2025, doi: 10.63332/joph.v5i5.1813.

M. A. Goffer et al., “AI-Enhanced Cyber Threat Detection and Response Advancing National Security in Critical Infrastructure,” J. Posthumanism, vol. 5, no. 3 SE-, pp. 1667–1689, Apr. 2025, doi: 10.63332/joph.v5i3.965.

S. Sultana et al., “A Comparative Review of Machine Learning Algorithms in Supermarket Sales Forecasting with Big Data ,” J. Ecohumanism, vol. 3, no. 8 SE-Articles, pp. 14457 – 14467, Nov. 2024, doi: 10.62754/joe.v3i8.6762.

F. Mahmud et al., “Big data and cloud computing in IT project management: A framework for enhancing performance and decision-making,” 2025.

J. Kaur et al., “Advanced Cyber Threats and Cybersecurity Innovation-Strategic Approaches and Emerging Solutions,” J. Comput. Sci. Technol. Stud., vol. 5, no. 3, pp. 112–121, 2023, [Online]. Available: https://doi.org/10.32996/jcsts.2023.5.3.9

M. M. T. G. Manik, A. S. M. Saimon, M. K. Ahmed, S. Hossain, M. Moniruzzaman, and M. S. Islam, “Predictive Modelling for Early Detection of Type 2 Diabetes Using AI-Driven Machine Learning Algorithms and Big Data Analytics BT - Proceedings of the International Conference on AI and Robotics,” 2025, pp. 422–433.

M. A. Goffer, “Leveraging Predictive Analytics In Management Information Systems To Enhance Supply Chain Resilience And Mitigate Economic Disruptions,” Educ. Adm. Theory Pract., vol. 30, no. 4, pp. 11134–11144, 2024, doi: 10.53555/kuey.v30i4.9641.

Jobanpreet Kaur et al., “Comparative Analysis of Transformer and LSTM Architectures for Cybersecurity Threat Detection Using Machine Learning,” EAI Endorsed Trans. AI Robot., vol. 4, no. SE-Research article, Sep. 2025, doi: 10.4108/airo.9759.

M. D. Hossain, M. S. Uddin, M. S. Sikder, T. Hossen, B. Uddin, and R. M. Ahsan, “Green and Secure Data Centers: Balancing Energy Efficiency with Advanced Cybersecurity Measures,” J. Comput. Sci. Technol. Stud., vol. 6, no. 5, pp. 300–315, 2024.

F. Mahmud, M. A. Goffer, H. Rahman, and G. T. Alam, “The Role of Cloud-Based Management Information Systems in Enhancing IT Project Governance and Stakeholder Collaboration”, [Online]. Available: https://doi.org/10.1007/978-3-032-05548-4_1

M. E. Hossin et al., “Digital Transformation in the USA Leveraging AI and Business Analytics for IT Project Success in the Post-Pandemic Era,” J. Posthumanism, vol. 5, no. 4 SE-, pp. 958–976, Apr. 2025, doi: 10.63332/joph.v5i4.1180.

K. J. Mukta and M. A. Islam, “Artificial Intelligence in Psychiatric Inpatient Care: Advancing Diagnostics, Personalized Treatment, and Ethical Integration,” J. Psychol. Behav. Stud., vol. 5, no. 3, pp. 1–15, 2025.

S. Hossain et al., “From Data to Value: Leveraging Business Analytics for Sustainable Management Practices,” J. Posthumanism, vol. 5, no. 5 SE-, pp. 82–105, Apr. 2025, doi: 10.63332/joph.v5i5.1309.

Syed Nazmul Hasan, “Enhancing Cybersecurity Threat Detection and Response Through Big Data Analytics in Management Information Systems,” Fuel Cells Bull., 2023, doi: 10.52710/fcb.137.

A. Shan-a-alahi, K. R. Hossan, and Z. Al, “Cybersecurity Training and Its Influence on Employee Behavior in Business Environments,” pp. 506–515, 2024.

Farhana Karim et al., “Empowering Women through Microcredit: An Analysis of the Grameen Bank Model’s Impact on Socio-Economic Outcomes,” Int. J. Comput. Exp. Sci. Eng., vol. 10, no. 4 SE-Research Article, Dec. 2024, doi: 10.22399/ijcesen.4074.

Md Abubokor Siam et al., “AI-Driven Cyber Threat Intelligence Systems: A National Framework for Proactive Defense Against Evolving Digital Warfare,” Int. J. Comput. Exp. Sci. Eng., vol. 11, no. 3 SE-Research Article, Aug. 2025, doi: 10.22399/ijcesen.3793.

M. H. Rahman, M. M. Anwar, and F. Hossain, “AI-driven big data and business analytics: Advancing healthcare, precision medicine, supply chain resilience, energy innovation and economic competitiveness,” J. Med. Heal. Stud., vol. 6, no. 3, pp. 205–215, 2025.

G. T. Alam, M. I. Jobiullah, A. S. Suspee, M. M. Bakhsh, A. S. M. Saimon, and S. M. Muhive Uddin, “Creating a Knowledge Hub: AI-Powered Learning Management Systems for BA-QA Training,” Int. J. Innov. Sci. Res. Technol., vol. 10, no. 4, pp. 3111–3118, 2025, [Online]. Available: https://doi.org/10.38124/ijisrt/25apr1081

F. Mahmud et al., “AI-Driven Cybersecurity in IT Project Management: Enhancing Threat Detection and Risk Mitigation,” J. Posthumanism, vol. 5, no. 4 SE-, pp. 23–44, Apr. 2025, doi: 10.63332/joph.v5i4.974.

S. Sultana et al., “AI-Augmented Big Data Analytics for Real-Time Cyber Attack Detection and Proactive Threat Mitigation,” Int. J. Comput. Exp. Sci. Eng., vol. 11, no. 3 SE-Research Article, Jul. 2025, doi: 10.22399/ijcesen.3564.

M. M. Bakhsh, M. S. A. Joy, and G. T. Alam, “Revolutionizing BA-QA Team Dynamics: AI-Driven Collaboration Platforms for Accelerated Software Quality in the US Market,” J. Artif. Intell. Gen. Sci. ISSN 3006-4023, vol. 7, no. 01, pp. 63–76, 2024, [Online]. Available: https://doi.org/10.60087/jaigs.v7i01.296

F. Mahmud et al., “The Role of Cloud-Based Management Information Systems in Enhancing IT Project Governance and Stakeholder Collaboration BT - Proceedings of the International Conference on AI and Robotics,” 2025, pp. 1–14.

M. H. Rahman, U. Haldar, M. A. Miah, M. Uddin, K. B. Siddiqa, and S. Hossain, “Md Аsikur Rаhmаn Chy, Gazi Touhidul Alam.(2024). Scalable AI Models for Climate Change Mitigation Using Multisource Geospatial Big Data,” J. Comput. Anal. Appl., vol. 33, no. 08, pp. 5836–5856.

H. R. Niropam Das, K. B. Siddiqa, C. R. Barikdar, J. Hassan, M. M. R. Bhuiyan, and F. Mahmud, “The Strategic Impact of Business Intelligence Tools: A Review of Decision-Making and Ambidexterity,” Membr. Technol., pp. 542–553, 2025, [Online]. Available: https://doi.org/10.52710/mt.307

S. N. Hasan et al., “The influence of artificial intelligence on data system security,” Int. J. Comput. Exp. Sci. Eng., vol. 11, no. 3, 2025.

M. A. Goffer et al., “Cybersecurity and Supply Chain Integrity: Evaluating the Economic Consequences of Vulnerabilities in US Infrastructure,” J. Manag. World, vol. 2, pp. 233–243, 2025, [Online]. Available: https://doi.org/10.53935/jomw.v2024i4.907

M. H. Rahman, M. T. Bin Ansar, S. Hossain, U. S. Saha, H. Imam, and I. T. Ahsan, “AI-Powered QA in Healthcare Software: Leveraging Predictive Analytics and Digital Twins for Safe, Cost-Effective, and Agile Medical Systems,” J. Comput. Sci. Technol. Stud., vol. 7, no. 9, pp. 619–628, 2025.

M. M. T. G. Manik, A. S. M. Saimon, M. S. Islam, M. Moniruzzaman, E. Rozario, and E. Hossin, Big Data Analytics for Credit Risk Assessment. 2025. doi: 10.1109/ICMLAS64557.2025.10967667.

P. Chakraborty et al., “Leveraging Artificial Intelligence and Machine Learning for Decision-Making in Business Management: A Comprehensive Analysis,” J. Manage., vol. 2, pp. 46–56, 2025.

J. Hassan et al., “Emerging Trends and Performance Evaluation of Eco-Friendly Construction Materials for Sustainable Urban Development,” J. Mech. Civ. Ind. Eng., vol. 2, no. 2, pp. 80–90, 2021.

M. M. Rahaman et al., “A Novel Data-Driven Multi-Branch LSTM Architecture with Attention Mechanisms for Forecasting Electric Vehicle Adoption,” World Electr. Veh. J., vol. 16, no. 8, p. 432, 2025, [Online]. Available: https://doi.org/10.3390/wevj16080432

F. Khair et al., Sustainable Economic Growth Through Data Analytics: The Impact of Business Analytics on U.S. Energy Markets and Green Initiatives. 2024. doi: 10.1109/ICPIDS65698.2024.00026.

M. Samiun et al., “The role of artificial intelligence in managing hospitalized patients with mental illness: a scoping review,” Discov. Public Heal., vol. 22, no. 1, p. 421, 2025, [Online]. Available: https://doi.org/10.1186/s12982-025-00814-0

M. M. T. G. Manik et al., “AI-Driven Precision Medicine Leveraging Machine Learning and Big Data Analytics for Genomics-Based Drug Discovery,” J. Posthumanism, vol. 5, no. 1 SE-, pp. 1560–1580, Jan. 2025, doi: 10.63332/joph.v5i1.1993.

K. B. Siddiqa et al., “AI-Driven Project Management Systems: Enhancing IT Project Efficiency through MIS Integration,” in 2024 International Conference on Progressive Innovations in Intelligent Systems and Data Science (ICPIDS), 2024, pp. 114–119. [Online]. Available: https://doi.org/10.1109/ICPIDS65698.2024.00027

M. S. Islam et al., “Explainable AI in Healthcare: Leveraging Machine Learning and Knowledge Representation for Personalized Treatment Recommendations,” J. Posthumanism, vol. 5, no. 1 SE-, pp. 1541–1559, Jan. 2025, doi: 10.63332/joph.v5i1.1996.

Shuchona Malek Orthi et al., “Federated Learning with Privacy-Preserving Big Data Analytics for Distributed Healthcare Systems,” J. Comput. Sci. Technol. Stud., vol. 7, no. 8 SE-Research Article, pp. 269–281, doi: 10.32996/jcsts.2025.7.8.31.