Data Forecasting Model to Know the Social Impact of Poverty in the Era of Globalization in West Java Province, Indonesia
Main Article Content
Abstract
Globalization has a social impact in the form of poverty. Meanwhile, poverty data in West Java Province, Indonesia, will increase in 2021 by 999,960 people. In addition to education, a country's poverty level shows its citizens' welfare. Therefore the poverty level in that country must be considered. In the Sustainable Development Goals, poverty is the priority scale to be considered. Therefore, forecasting is quite crucial in planning to know in advance what will happen. ARIMA (Auto Regressive Integrative Moving Average) is a modeling approach that can calculate the probability of a future value between two specified limits. This study predicts the number of poor people in West Java Province, Indonesia, from 2022 to 2025. The data used are 15 years from 2007 to 2021 and are processed with the Eviews computer program to see patterns and results in the ARIMA model. The modeling stage starts from data stationarity testing, model identification, model estimation, and model verification to forecasting. Based on the results of this study, the prediction results of the number of poor people in 2022 are 3,618,866; in 2023, it will be 3,512,758; in 2024, there will be 3,406,651, and in 2025 it will be 3,300,543 people. This forecasting uses the ARIMA (Auto Regressive Integrative Moving Average) model (1, 2, 1) as the most accurate method with MAD (Mean Absolute Deviation) error parameters of 1,751,747, MSE (Mean Square Error) of 6,977,202,252. 995 and MAPE (Mean Absolute Percentage Error) of 8%.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
A. Bahauddin, A. Fatmawati, and F. Permata Sari, “Analisis Clustering Provinsi Di Indonesia Berdasarkan Tingkat Kemiskinan Menggunakan Algoritma K-Means,” J. Manaj. Inform. dan Sist. Inf., vol. 4, no. 1, p. 1, 2021, doi: 10.36595/misi.v4i1.216.
D. Desinta and J. R. H. Sitorus, “Pengaruh Kejadian Bencana Alam dan Sosial Demografi Terhadap Kemiskinan di Jawa Tengah Tahun 2017-2020,” Semin. Nas. Off. Stat., vol. 2021, no. 1, pp. 383–392, 2021, doi: 10.34123/semnasoffstat.v2021i1.875.
A. Solana, “Analisis Prioritas Pembangunan Subsektor Pertanian Tanaman Pangan Dalam Kaitannya Dengan Tingkat Kesejahteraan Petani Tanaman Pangan Di Tahun 2020,” 2021. [Online]. Available: https://prosiding.stis.ac.id/index.php/semnasoffstat/article/view/790
I. K. Wardani, Y. Susanti, S. Subanti, P. S. Statistika, and U. S. Maret, “Pemodelan Indeks Kedalaman Kemiskinan Di Indonesia Menggunakan,” Pros. Semin. Nas. Apl. Sains Teknol. 2021, pp. 15–23, 2021.
I. Rhamadani, “Analisis Pengaruh Inklusi Keuangan Dan Kemiskinan Di Indonesia (Studi Kasus Pada Tahun 2007-2018),” J. Ilm. Mhs. FEB, 2021, [Online]. Available: https://jimfeb.ub.ac.id/index.php/jimfeb/article/view/7785
D. Schedlitzki and G. Edwards, Studying leadership: Traditional and critical approaches. 2021.
R. Fadila and M. Marwan, “Pengaruh Indeks Pembangunan Manusia (IPM) dan Pertumbuhan Ekonomi terhadap Tingkat Kemiskinan di Provinsi Sumatera Barat periode tahun 2013-2018,” J. Ecogen, vol. 3, no. 1, p. 120, 2020, doi: 10.24036/jmpe.v3i1.8531.
A. Anlesinya and P. Susomrith, “Sustainable human resource management: a systematic review of a developing field,” J. Glob. Responsib., vol. 11, no. 3, pp. 295–324, 2020, doi: 10.1108/JGR-04-2019-0038.
M. Rizki, “Dampak Program Perlindungan Sosial Dalam Mengatasi Kemiskinan Di Tengah Pandemi Covid-19,” J. Good Gov., vol. 17, no. 2, pp. 125–135, 2021, doi: 10.32834/gg.v17i2.335.
R. Fadila, “Pengaruh Indeks Pembangunan Manusia (IPM) dan Pertumbuhan Ekonomi Terhadap Tingkat Kemiskinan di Provinsi Sumatera Barat,” 2020.
G. Gebila and A. Wulandari, “Pengaruh Pengangguran Terhadap Kemiskinan Di Kabupaten Bangka Tahun 2009-2018,” J. Manaj. Kompeten, vol. 3, no. 2, p. 23, 2021, doi: 10.51877/mnjm.v3i2.173.
M. I. Syairozi, “ANALISIS KEMISKINAN DI SEKTOR PERTANIAN (Studi Kasus Komoditas Padi di Kabupaten Malang),” Media Ekon., vol. 28, no. 2, pp. 113–128, 2021, doi: 10.25105/me.v28i2.7169.
K. Cresswell et al., “Benefits realization management in the context of a national digital transformation initiative in English provider organizations,” J. Am. Med. Inform. Assoc., vol. 29, no. 3, pp. 536–545, 2022, doi: 10.1093/jamia/ocab283.
E. Widodo, P. Ermayani, L. N. Laila, and A. T. Madani, “Pengelompokkan Provinsi di Indonesia Berdasarkan Tingkat Kemiskinan Menggunakan Analisis Hierarchical Agglomerative Clustering,” Semin. Nas. Off. Stat., vol. 2021, no. 1, pp. 557–566, 2021, doi: 10.34123/semnasoffstat.v2021i1.971.
F. Adams and H. Dwi Atmanti, “Analisis pengaruh inklusi keuangan terhadap kemiskinan di 6 provinsi di pulau jawa,” Stud. Manaj. dan Ris. Terap., vol. 1, no. 1, pp. 1–8, 2021.
N. Afira and A. W. Wijayanto, “Analisis Cluster dengan Metode Partitioning dan Hierarki pada Data Informasi Kemiskinan Provinsi di Indonesia Tahun 2019,” Komputika J. Sist. Komput., vol. 10, no. 2, pp. 101–109, 2021, doi: 10.34010/komputika.v10i2.4317.
R. D. Lestari, “ANALISIS PENGARUH AMH, JUMLAH PENDUDUK, PENGANGGURAN, AHH, dan PDB TERHADAP KEMISKINAN di INDONESIA, MALAYSIA, dan THAILANDpadaTAHUN 2000-2020,” J. Ilm., 2021.
L. Widyarsi and H. Usman, “Penggunaan Data Google Trends untuk Peramalan Tingkat Pengangguran Terbuka di Tingkat Nasional dan Regional di Provinsi Jawa Barat,” Semin. Nas. Off. Stat., vol. 2021, no. 1, pp. 980–990, 2021, doi: 10.34123/semnasoffstat.v2021i1.842.
Y. Hara, H. Nakazono, and T. Imagawa, “Are We Pretender of Digitalization?—Towards a New Management Using Telework and Digital Transformation. Platforms and Artificial Intelligence,” 2022, doi: https://doi.org/10.1007/978-3-030-90192-9_10.
H. Prasetyono, R. Vhalery, I. P. Ramdayana, S. Salmin, and W. P. Anggraini, “Meningkatkan Innovative Work Behaviour Guru Di Sekolah Penggerak Melalui Work Engagement Dan Servant Leadership,” Res. Dev. J. Educ., vol. 8, no. 2, p. 791, 2022, doi: 10.30998/rdje.v8i2.14180.
Y. Juniarto and S. Muchlisoh, “Pengaruh Kredit UMKM Terhadap Tingkat Pengangguran Terbuka Kabupaten/Kota di Provinsi Jawa Barat Tahun 2015-2019,” Semin. Nas. Off. Stat., vol. 2021, no. 1, pp. 577–586, 2021, doi: 10.34123/semnasoffstat.v2021i1.973.
M. I. Rizki and T. A. Taqiyyuddin, “Pemodelan Regresi Spatial Autoregressive Fixed Effect Model Data Panel Pada Tingkat Kemiskinan Di Provinsi Jawa Barat,” J Stat. J. Ilm. Teor. dan Apl. Stat., vol. 14, no. 1, pp. 44–51, 2021, doi: 10.36456/jstat.vol14.no1.a3816.
K. N. Santoso and S. A. Rakhmawan, “Indeks Komposit Pekerjaan Layak di Indonesia Pada Era Pandemi COVID-19,” Semin. Nas. Off. Stat., vol. 2021, no. 1, pp. 214–222, 2021, doi: 10.34123/semnasoffstat.v2021i1.840.
R. T. B. Razendrya, “Faktor-Faktor yang Memengaruhi Pembangunan Manusia,” Semin. Nas. Off. Stat., vol. 2021, no. 1, pp. 176–184, 2021, doi: 10.34123/semnasoffstat.v2021i1.810.
R. Aldiyus and F. D. Dwatra, “Hubungan harga diri dengan kecemasan sosial penyalahgunaan narkoba pada masa rehabilitasi di BNNP Sumatera Barat,” J. Pendidik. Tambusai, vol. 5, no. 1, pp. 305–310, 2021.
S. Setyadi and L. Indriyani, “Dampak Pandemi Covid-19 Terhadap Peningkatan Anak,” J. Ekon. Dan Kebijak. Publik, vol. 4, pp. 1–11, 2021, [Online]. Available: https://spektrumonline.com/2020/11/11/dampak-pandemi-covid-19-multidimensi/
D. Salsabila and M. Y. Hendrawan, “Analisis Kondisi Pemberdayaan Gender di Indonesia Tahun 2020 dengan Agglomerative Hierarchical Clustering dan Biplot,” Semin. Nas. Off. Stat., vol. 2021, no. 1, pp. 204–213, 2021, doi: 10.34123/semnasoffstat.v2021i1.839.
R. R. Nuryanti and T. Soebagijo, “SEM-PLS Untuk Analisis Struktur Kemiskinan Pada Masa Pandemi Covid-19,” Semin. Nas. Off. Stat., vol. 2021, no. 1, pp. 195–203, 2021, doi: 10.34123/semnasoffstat.v2021i1.836.
I. Mujahid, “Social skills and behavior autism spectrum disorder during covid-19 Pandemic,” J. Konseling dan Pendidik., vol. 10, no. 1, p. 167, 2022, doi: 10.29210/170000.